ORCID as entered in ROS

Select Publications
2018, Preface, http://dx.doi.org/10.1007/978-3-319-90149-7
,2010, Conclusion: Trends and Predictions for Genetic and Developmental Biological Research on Scoliosis, Kusumi K; Dunwoodie SL, (ed.), SPRINGER-VERLAG BERLIN, http://dx.doi.org/10.1007/978-1-4419-1406-4_10
,2010, Preface, http://dx.doi.org/10.1007/978-1-4419-1406-4
,2010, The genetics and development of scoliosis, http://dx.doi.org/10.1007/978-1-4419-1406-4
,2016, 'DLL3, MESP2, LFNG, HES7, TBX6, RIPPLY2 and Spondylocostal Dysostosis', in Epstein's Inborn Errors of Development, Oxford University Press, pp. 559 - 570, http://dx.doi.org/10.1093/med/9780199934522.003.0074
,2015, 'Genetic and Environmental Interaction in Malformation of the Vertebral Column', in Wise C; Rios JJ (ed.), Molecular Genetics of Pediatric Orthopaedics, Springer Science+Business Media, pp. 131 - 151
,2010, 'Abnormal Vertebral Segmentation (or Segmentation Defects of the Vertebrae) and the Spondylocostal Dysostoses', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 81 - 108, http://dx.doi.org/10.1007/978-1-4419-1406-4_5
,2010, 'Current Understanding of Genetic Factors in Idiopathic Scoliosis', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 167 - 190, http://dx.doi.org/10.1007/978-1-4419-1406-4_9
,2010, 'Development and Functional Anatomy of the Spine', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 21 - 46, http://dx.doi.org/10.1007/978-1-4419-1406-4_2
,2010, 'Environmental Factors and Axial Skeletal Dysmorphogenesis', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 47 - 72, http://dx.doi.org/10.1007/978-1-4419-1406-4_3
,2010, 'Genetic Regulation of Somite and Early Spinal Patterning', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 1 - 20, http://dx.doi.org/10.1007/978-1-4419-1406-4_1
,2010, 'Genetics and Functional Pathology of Idiopathic Scoliosis', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 153 - 166, http://dx.doi.org/10.1007/978-1-4419-1406-4_8
,2010, 'Overview and Comparison of Idiopathic, Neuromuscular, and Congenital Forms of Scoliosis', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 73 - 79, http://dx.doi.org/10.1007/978-1-4419-1406-4_4
,2010, 'Progress in Understanding Genetic Contributions in Syndromic and Non-Syndromic Disorders Associated with Congenital, Neuromuscular, and Idiopathic Scoliosis', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 127 - 152, http://dx.doi.org/10.1007/978-1-4419-1406-4_7
,2010, 'Spondylothoracic Dysostosis in Puerto Rico', in Kusumi K; Dunwoodie SL (ed.), GENETICS AND DEVELOPMENT OF SCOLIOSIS, SPRINGER-VERLAG BERLIN, pp. 109 - 126, http://dx.doi.org/10.1007/978-1-4419-1406-4_6
,2010, 'Role of Delta-like-3 in mammalian somitogenesis and vertebral column formation', in Advances in Experimental Medicine and Biology, Springer New York LLC, United States, pp. 95 - 112, http://www.springer.com/series/5584
,2008, 'DLL3, MESP2, and LFNG and Spondylocostal Dysostosis', in Inborn Errors Of Development, Oxford University PressNew York, NY, pp. 560 - 572, http://dx.doi.org/10.1093/oso/9780195306910.003.0056
,2008, 'Role of Delta-like-3 in mammalian somitogenesis and vertebral column formation', in Advances in Experimental Medicine and Biology, Springer New York LLC, United States, pp. 95 - 112
,2025, 'Atlas of multilineage stem cell differentiation reveals TMEM88 as a developmental regulator of blood pressure', Nature Communications, 16, http://dx.doi.org/10.1038/s41467-025-56533-2
,2025, 'Haploinsufficient variants in SMAD5 are associated with isolated congenital heart disease', Human Genetics and Genomics Advances, 6, http://dx.doi.org/10.1016/j.xhgg.2025.100478
,2025, 'Maternal Circulatory NAD Precursor Levels and the Yolk Sac Determine NAD Deficiency-Driven Congenital Malformation Risk', FASEB Journal, 39, http://dx.doi.org/10.1096/fj.202500708RR
,2025, 'Polygenic Inheritance for Common Comorbidities Associated With Congenital Heart Disease', Jacc Advances, 4, http://dx.doi.org/10.1016/j.jacadv.2025.101673
,2025, 'Impaired yolk sac NAD metabolism disrupts murine embryogenesis with relevance to human birth defects', eLife, 13, http://dx.doi.org/10.7554/elife.97649.3
,2024, 'The Kids Heart BioBank: Supporting 20 years of patient care and research into CHD', Cardiology in the Young, 34, pp. 1645 - 1652, http://dx.doi.org/10.1017/S1047951124025654
,2024, 'Polygenic Risk in Families with Spontaneous Coronary Artery Dissection', JAMA Cardiology, 9, pp. 254 - 261, http://dx.doi.org/10.1001/jamacardio.2023.5194
,2024, 'A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder', Journal of Clinical Investigation, 134, http://dx.doi.org/10.1172/JCI174824
,2024, 'A multitiered analysis platform for genome sequencing: Design and initial findings of the Australian Genomics Cardiovascular Disorders Flagship', Genetics in Medicine Open, 2, http://dx.doi.org/10.1016/j.gimo.2024.101842
,2024, 'How the Australian Functional Genomics Network (AFGN) contributes to improved patient care', Pathology, 56, pp. S21 - S22, http://dx.doi.org/10.1016/j.pathol.2023.12.084
,2024, 'Metabolic dysfunction ameliorated by reduced nicotinamide mononucleotide in high fat diet fed mice', Obesity Research & Clinical Practice, 18, pp. S6 - S6, http://dx.doi.org/10.1016/j.orcp.2024.09.014
,2024, 'Prenatal and Maternal Contributors to Disease Severity in Congenital Heart Disease', Heart, Lung and Circulation, 33, pp. S98 - S99, http://dx.doi.org/10.1016/j.hlc.2024.04.176
,2023, 'ConanVarvar: a versatile tool for the detection of large syndromic copy number variation from whole-genome sequencing data', BMC Bioinformatics, 24, http://dx.doi.org/10.1186/s12859-023-05154-x
,2023, 'Nicotinamide Adenine Dinucleotide Deficiency and Its Impact on Mammalian Development', Antioxidants and Redox Signaling, 39, pp. 1108 - 1132, http://dx.doi.org/10.1089/ars.2023.0349
,2023, 'Myeloid-CITED2 Deficiency Exacerbates Diet-Induced Obesity and Pro-Inflammatory Macrophage Response', Cells, 12, http://dx.doi.org/10.3390/cells12172136
,2023, 'Quantitative trait and transcriptome analysis of genetic complexity underpinning cardiac interatrial septation in mice using an advanced intercross line', Elife, 12, http://dx.doi.org/10.7554/eLife.83606
,2023, 'Examination of validity of identifying congenital heart disease from hospital discharge data without a gold standard: Using a data linkage approach', Paediatric and Perinatal Epidemiology, 37, pp. 303 - 312, http://dx.doi.org/10.1111/ppe.12976
,2023, 'Maternal heterozygosity of Slc6a19 causes metabolic perturbation and congenital NAD deficiency disorder in mice', DMM Disease Models and Mechanisms, 16, pp. dmm049647, http://dx.doi.org/10.1242/dmm.049647
,2023, 'Australian Genomics: Outcomes of a 5-year national program to accelerate the integration of genomics in healthcare', American Journal of Human Genetics, 110, pp. 419 - 426, http://dx.doi.org/10.1016/j.ajhg.2023.01.018
,2023, 'The International Society of Differentiation: Past, present, and future', Differentiation, 130, pp. 28 - 31, http://dx.doi.org/10.1016/j.diff.2022.12.003
,2023, 'Using novel data linkage of congenital heart disease biobank data with administrative health data to identify cardiovascular outcomes to inform genomic analysis', International Journal of Population Data Science, 8, http://dx.doi.org/10.23889/ijpds.v8i1.2150
,2023, 'The Kids Heart BioBank—Supporting Patient Care and Research Into Congenital Heart Disease', Heart, Lung and Circulation, 32, pp. S317 - S317, http://dx.doi.org/10.1016/j.hlc.2023.06.448
,2022, 'Insights into the genetic architecture underlying complex, critical congenital heart disease.', American Heart Journal, 254, pp. 166 - 171, http://dx.doi.org/10.1016/j.ahj.2022.09.006
,2022, 'Viewing teratogens through the lens of nicotinamide adenine dinucleotide (NAD+)', Birth Defects Research, 114, pp. 1313 - 1323, http://dx.doi.org/10.1002/bdr2.2089
,2022, 'Myhre syndrome is caused by dominant-negative dysregulation of SMAD4 and other co-factors', Differentiation, 128, pp. 1 - 12, http://dx.doi.org/10.1016/j.diff.2022.09.002
,2022, 'Exploring the Genetic Architecture of Spontaneous Coronary Artery Dissection Using Whole-Genome Sequencing', Circulation Genomic and Precision Medicine, 15, pp. 267 - 277, http://dx.doi.org/10.1161/CIRCGEN.121.003527
,2022, 'CHDgene: A Curated Database for Congenital Heart Disease Genes', Circulation: Genomic and Precision Medicine, 15, pp. E003539 - E003539, http://dx.doi.org/10.1161/CIRCGEN.121.003539
,2022, 'An image analysis protocol using CellProfiler for automated quantification of post-ischemic cardiac parameters', STAR Protocols, 3, http://dx.doi.org/10.1016/j.xpro.2021.101097
,2022, 'Quantitative 3D analysis and visualization of cardiac fibrosis by microcomputed tomography', STAR Protocols, 3, http://dx.doi.org/10.1016/j.xpro.2021.101055
,2022, 'Benchmarking the Effectiveness and Accuracy of Multiple Mitochondrial DNA Variant Callers: Practical Implications for Clinical Application', Frontiers in Genetics, 13, http://dx.doi.org/10.3389/fgene.2022.692257
,2022, 'Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction', Cell Stem Cell, 29, pp. 281 - 297.e12, http://dx.doi.org/10.1016/j.stem.2021.10.009
,2022, 'Whole genome sequencing in transposition of the great arteries and associations with clinically relevant heart, brain and laterality genes', American Heart Journal, 244, pp. 1 - 13, http://dx.doi.org/10.1016/j.ahj.2021.10.185
,