Select Publications
Journal articles
, 2025, 'Atlas of multilineage stem cell differentiation reveals TMEM88 as a developmental regulator of blood pressure', Nature Communications, 16, http://dx.doi.org/10.1038/s41467-025-56533-2
, 2025, 'Notch4 is essential for the maintenance of vascular homeostasis in the young adult pituitary posterior lobes', Scientific Reports, 15, http://dx.doi.org/10.1038/s41598-025-17225-5
, 2025, 'Haploinsufficient variants in SMAD5 are associated with isolated congenital heart disease', Human Genetics and Genomics Advances, 6, http://dx.doi.org/10.1016/j.xhgg.2025.100478
, 2025, 'Benchmarking of variant pathogenicity prediction methods using a population genetics approach', Bioinformatics Advances, http://dx.doi.org/10.1093/bioadv/vbaf227
, 2025, 'Maternal Circulatory NAD Precursor Levels and the Yolk Sac Determine NAD Deficiency-Driven Congenital Malformation Risk', FASEB Journal, 39, http://dx.doi.org/10.1096/fj.202500708RR
, 2025, 'Polygenic Inheritance for Common Comorbidities Associated With Congenital Heart Disease', Jacc Advances, 4, http://dx.doi.org/10.1016/j.jacadv.2025.101673
, 2025, 'Impaired yolk sac NAD metabolism disrupts murine embryogenesis with relevance to human birth defects', eLife, 13, http://dx.doi.org/10.7554/elife.97649.3
, 2024, 'The Kids Heart BioBank: Supporting 20 years of patient care and research into CHD', Cardiology in the Young, 34, pp. 1645 - 1652, http://dx.doi.org/10.1017/S1047951124025654
, 2024, 'Polygenic Risk in Families with Spontaneous Coronary Artery Dissection', JAMA Cardiology, 9, pp. 254 - 261, http://dx.doi.org/10.1001/jamacardio.2023.5194
, 2024, 'A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder', Journal of Clinical Investigation, 134, http://dx.doi.org/10.1172/JCI174824
, 2024, 'A multitiered analysis platform for genome sequencing: Design and initial findings of the Australian Genomics Cardiovascular Disorders Flagship', Genetics in Medicine Open, 2, http://dx.doi.org/10.1016/j.gimo.2024.101842
, 2024, 'How the Australian Functional Genomics Network (AFGN) contributes to improved patient care', Pathology, 56, pp. S21 - S22, http://dx.doi.org/10.1016/j.pathol.2023.12.084
, 2024, 'Metabolic dysfunction ameliorated by reduced nicotinamide mononucleotide in high fat diet fed mice', Obesity Research & Clinical Practice, 18, pp. S6 - S6, http://dx.doi.org/10.1016/j.orcp.2024.09.014
, 2024, 'Prenatal and Maternal Contributors to Disease Severity in Congenital Heart Disease', Heart, Lung and Circulation, 33, pp. S98 - S99, http://dx.doi.org/10.1016/j.hlc.2024.04.176
, 2023, 'ConanVarvar: a versatile tool for the detection of large syndromic copy number variation from whole-genome sequencing data', BMC Bioinformatics, 24, http://dx.doi.org/10.1186/s12859-023-05154-x
, 2023, 'Nicotinamide Adenine Dinucleotide Deficiency and Its Impact on Mammalian Development', Antioxidants and Redox Signaling, 39, pp. 1108 - 1132, http://dx.doi.org/10.1089/ars.2023.0349
, 2023, 'Myeloid-CITED2 Deficiency Exacerbates Diet-Induced Obesity and Pro-Inflammatory Macrophage Response', Cells, 12, http://dx.doi.org/10.3390/cells12172136
, 2023, 'Quantitative trait and transcriptome analysis of genetic complexity underpinning cardiac interatrial septation in mice using an advanced intercross line', Elife, 12, http://dx.doi.org/10.7554/eLife.83606
, 2023, 'Examination of validity of identifying congenital heart disease from hospital discharge data without a gold standard: Using a data linkage approach', Paediatric and Perinatal Epidemiology, 37, pp. 303 - 312, http://dx.doi.org/10.1111/ppe.12976
, 2023, 'Maternal heterozygosity of Slc6a19 causes metabolic perturbation and congenital NAD deficiency disorder in mice', DMM Disease Models and Mechanisms, 16, pp. dmm049647, http://dx.doi.org/10.1242/dmm.049647
, 2023, 'Australian Genomics: Outcomes of a 5-year national program to accelerate the integration of genomics in healthcare', American Journal of Human Genetics, 110, pp. 419 - 426, http://dx.doi.org/10.1016/j.ajhg.2023.01.018
, 2023, 'The International Society of Differentiation: Past, present, and future', Differentiation, 130, pp. 28 - 31, http://dx.doi.org/10.1016/j.diff.2022.12.003
, 2023, 'Using novel data linkage of congenital heart disease biobank data with administrative health data to identify cardiovascular outcomes to inform genomic analysis', International Journal of Population Data Science, 8, http://dx.doi.org/10.23889/ijpds.v8i1.2150
, 2023, 'The Kids Heart BioBank—Supporting Patient Care and Research Into Congenital Heart Disease', Heart, Lung and Circulation, 32, pp. S317 - S317, http://dx.doi.org/10.1016/j.hlc.2023.06.448
, 2022, 'Insights into the genetic architecture underlying complex, critical congenital heart disease.', American Heart Journal, 254, pp. 166 - 171, http://dx.doi.org/10.1016/j.ahj.2022.09.006
, 2022, 'Viewing teratogens through the lens of nicotinamide adenine dinucleotide (NAD+)', Birth Defects Research, 114, pp. 1313 - 1323, http://dx.doi.org/10.1002/bdr2.2089
, 2022, 'Myhre syndrome is caused by dominant-negative dysregulation of SMAD4 and other co-factors', Differentiation, 128, pp. 1 - 12, http://dx.doi.org/10.1016/j.diff.2022.09.002
, 2022, 'Exploring the Genetic Architecture of Spontaneous Coronary Artery Dissection Using Whole-Genome Sequencing', Circulation Genomic and Precision Medicine, 15, pp. 267 - 277, http://dx.doi.org/10.1161/CIRCGEN.121.003527
, 2022, 'CHDgene: A Curated Database for Congenital Heart Disease Genes', Circulation: Genomic and Precision Medicine, 15, pp. E003539 - E003539, http://dx.doi.org/10.1161/CIRCGEN.121.003539
, 2022, 'An image analysis protocol using CellProfiler for automated quantification of post-ischemic cardiac parameters', STAR Protocols, 3, http://dx.doi.org/10.1016/j.xpro.2021.101097
, 2022, 'Quantitative 3D analysis and visualization of cardiac fibrosis by microcomputed tomography', STAR Protocols, 3, http://dx.doi.org/10.1016/j.xpro.2021.101055
, 2022, 'Benchmarking the Effectiveness and Accuracy of Multiple Mitochondrial DNA Variant Callers: Practical Implications for Clinical Application', Frontiers in Genetics, 13, http://dx.doi.org/10.3389/fgene.2022.692257
, 2022, 'Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction', Cell Stem Cell, 29, pp. 281 - 297.e12, http://dx.doi.org/10.1016/j.stem.2021.10.009
, 2022, 'Whole genome sequencing in transposition of the great arteries and associations with clinically relevant heart, brain and laterality genes', American Heart Journal, 244, pp. 1 - 13, http://dx.doi.org/10.1016/j.ahj.2021.10.185
, 2022, 'Induced Pluripotent Stem Cell-Derived Models of Spontaneous Coronary Artery Dissection', Heart, Lung and Circulation, 31, pp. S87 - S87, http://dx.doi.org/10.1016/j.hlc.2022.06.097
, 2021, 'Simultaneous quantification of 26 NAD-related metabolites in plasma, blood, and liver tissue using UHPLC-MS/MS', Analytical Biochemistry, 633, http://dx.doi.org/10.1016/j.ab.2021.114409
, 2021, 'CITED2 inhibits STAT1-IRF1 signaling and atherogenesis', FASEB Journal, 35, http://dx.doi.org/10.1096/fj.202100792R
, 2021, 'New cases that expand the genotypic and phenotypic spectrum of Congenital NAD Deficiency Disorder', Human Mutation, 42, pp. 862 - 876, http://dx.doi.org/10.1002/humu.24211
, 2021, 'Precision Medicine in Cardiovascular Disease: Genetics and Impact on Phenotypes: JACC Focus Seminar 1/5', Journal of the American College of Cardiology, 77, pp. 2517 - 2530, http://dx.doi.org/10.1016/j.jacc.2020.12.071
, 2021, 'Kathryn V. Anderson (1952-2020)', Nature cell biology, 23, pp. 109 - 110, http://dx.doi.org/10.1038/s41556-021-00634-9
, 2021, 'A new era of genetic testing in congenital heart disease: A review', Trends in Cardiovascular Medicine, http://dx.doi.org/10.1016/j.tcm.2021.04.011
, 2021, 'Functional characterization of a novel PBX1 de novo missense variant identified in a patient with syndromic congenital heart disease', Human Molecular Genetics, 29, pp. 1068 - 1082, http://dx.doi.org/10.1093/HMG/DDZ231
, 2021, 'Modelling Spontaneous Coronary Artery Dissection With iPSC-Derived Vascular Cells', Heart, Lung and Circulation, 30, pp. S131 - S131, http://dx.doi.org/10.1016/j.hlc.2021.06.089
, 2021, 'Spontaneous Coronary Artery Dissection (SCAD) and a Family History of Aortic Artery Dissection—A Case Series', Heart, Lung and Circulation, 30, pp. S252 - S252, http://dx.doi.org/10.1016/j.hlc.2021.06.350
, 2020, 'Spontaneous Coronary Artery Dissection: Insights on Rare Genetic Variation From Genome Sequencing', Circulation Genomic and Precision Medicine, 13, pp. E003030, http://dx.doi.org/10.1161/CIRCGEN.120.003030
, 2020, 'Heterozygous loss of WBP11 function causes multiple congenital defects in humans and mice', Human Molecular Genetics, 29, pp. 3662 - 3678, http://dx.doi.org/10.1093/hmg/ddaa258
, 2020, 'Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway.', Development, 147, http://dx.doi.org/10.1242/dev.187187
, 2020, 'Diseases of development: Leveraging developmental biology to understand human disease', Development Cambridge, 147, http://dx.doi.org/10.1242/dev.197863
, 2020, 'Downregulation of the GHRH/GH/IGF1 axis in a mouse model of Börjeson-Forssman-Lehman syndrome.', Development, 147, http://dx.doi.org/10.1242/dev.187021
, 2020, 'The developing heart: from The Wizard of Oz to congenital heart disease.', Development, 147, http://dx.doi.org/10.1242/dev.194233