ORCID as entered in ROS

Select Publications
2021, Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits, http://arxiv.org/abs/2107.13664v2
,2021, A high-sensitivity charge sensor for silicon qubits above one kelvin, http://dx.doi.org/10.48550/arxiv.2103.06433
,2020, Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory, http://dx.doi.org/10.48550/arxiv.2012.06293
,2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.48550/arxiv.2008.03968
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.48550/arxiv.2008.04020
,2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.2004.07666
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.48550/arxiv.2004.07078
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.48550/arxiv.1902.09126
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.48550/arxiv.1902.01550
,2018, Stokes-anti-Stokes correlated photon properties akin to photonic Cooper pairs, http://dx.doi.org/10.48550/arxiv.1810.12461
,2018, Lifting of Spin Blockade by Charged Impurities in Si-MOS Double Quantum Dot Devices, http://dx.doi.org/10.48550/arxiv.1807.11064
,2018, Theory of Hole-Spin Qubits in Strained Germanium Quantum Dots, http://dx.doi.org/10.48550/arxiv.1803.10320
,2017, Adequacy of Si:P Chains as Fermi-Hubbard Simulators, http://dx.doi.org/10.48550/arxiv.1712.03195
,2017, Photonic Counterparts of Cooper Pairs, http://dx.doi.org/10.48550/arxiv.1709.04520
,2016, Donors in Ge as Qubits: Establishing Physical Attributes, http://dx.doi.org/10.48550/arxiv.1608.01270
,2016, Anderson Localization of Electrons in Silicon Donor Chains, http://dx.doi.org/10.48550/arxiv.1603.06936
,2015, Donor Wavefunctions in Si Gauged by STM Images, http://dx.doi.org/10.48550/arxiv.1508.02772
,2015, Transport through an impurity tunnel coupled to a Si/SiGe quantum dot, http://dx.doi.org/10.48550/arxiv.1505.02132
,2015, Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor, http://dx.doi.org/10.48550/arxiv.1504.02997
,2014, Theory of one and two donors in Silicon, http://dx.doi.org/10.48550/arxiv.1407.8224
,2014, Single-shot readout and relaxation of singlet/triplet states in exchange-coupled $^{31}$P electron spins in silicon, http://dx.doi.org/10.48550/arxiv.1402.7148
,2013, An Exchange-Coupled Donor Molecule in Silicon, http://dx.doi.org/10.48550/arxiv.1312.4589
,2013, Splitting Valleys in Si/SiO$_2$: Identification and Control of Interface States, http://dx.doi.org/10.48550/arxiv.1310.6878
,2013, Genetic Design of Enhanced Valley Splitting towards a Spin Qubit in Silicon, http://dx.doi.org/10.48550/arxiv.1303.4932
,2012, Impact of the valley degree of freedom on the control of donor electrons near a Si/SiO_2 interface, http://dx.doi.org/10.48550/arxiv.1203.6245
,2011, Valley-based noise-resistant quantum computation using Si quantum dots, http://dx.doi.org/10.48550/arxiv.1107.0003
,2010, Extended interface states enhance valley splitting in Si/SiO2, http://dx.doi.org/10.48550/arxiv.1009.4842
,2010, Intervalley coupling for interface-bound electrons in silicon: An effective mass study, http://dx.doi.org/10.48550/arxiv.1006.3338
,2009, Physical mechanisms of interface-mediated intervalley coupling in Si, http://dx.doi.org/10.48550/arxiv.0901.4702
,2008, Quantum control and manipulation of donor electrons in Si-based quantum computing, http://dx.doi.org/10.48550/arxiv.0809.3660
,2007, Reliability of the Heitler-London approach for the exchange coupling between electrons in semiconductor nanostructures, http://dx.doi.org/10.48550/arxiv.0706.3354
,