ORCID as entered in ROS

Select Publications
2025, Interplay of Zeeman Splitting and Tunnel Coupling in Coherent Spin Qubit Shuttling
,2025, Scalable quantum current source on commercial CMOS process technology, http://dx.doi.org/10.48550/arxiv.2506.15956
,2025, Enhancement of Electric Drive in Silicon Quantum Dots with Electric Quadrupole Spin Resonance, http://arxiv.org/abs/2502.01040v2
,2024, A 2x2 quantum dot array in silicon with fully tuneable pairwise interdot coupling, http://arxiv.org/abs/2411.13882v2
,2024, CMOS compatibility of semiconductor spin qubits, http://arxiv.org/abs/2409.03993v1
,2024, Violating Bell's inequality in gate-defined quantum dots, http://arxiv.org/abs/2407.15778v2
,2024, Electronic Correlations in Multielectron Silicon Quantum Dots, http://dx.doi.org/10.48550/arxiv.2407.04289
,2023, Entangling gates on degenerate spin qubits dressed by a global field, http://dx.doi.org/10.1038/s41467-024-52010-4
,2023, Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system, http://dx.doi.org/10.1063/5.0179958
,2023, Wavelet correlation noise analysis for qubit operation variable time series, http://dx.doi.org/10.1038/s41598-024-79553-2
,2023, Electrical operation of hole spin qubits in planar MOS silicon quantum dots, http://dx.doi.org/10.48550/arxiv.2309.12243
,2023, Silicon charge pump operation limit above and below liquid helium temperature, http://dx.doi.org/10.1103/PhysRevApplied.21.014040
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, Methods for transverse and longitudinal spin-photon coupling in silicon quantum dots with intrinsic spin-orbit effect, http://arxiv.org/abs/2308.12626v1
,2023, Characterizing non-Markovian Quantum Process by Fast Bayesian Tomography, http://arxiv.org/abs/2307.12452v2
,2023, Improved Single-Shot Qubit Readout Using Twin RF-SET Charge Correlations, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2023, Path integral simulation of exchange interactions in CMOS spin qubits, http://dx.doi.org/10.1103/PhysRevB.108.155413
,2023, Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field, http://dx.doi.org/10.1103/PhysRevB.108.245301
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org/10.1038/s41467-024-48557-x
,2023, Accessing the Full Capabilities of Filter Functions: A Tool for Detailed Noise and Control Susceptibility Analysis, http://dx.doi.org/10.1103/PhysRevA.108.012426
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, http://dx.doi.org/10.1002/adma.202208557
,2022, Control of dephasing in spin qubits during coherent transport in silicon, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2022, Indirect control of the 29SiV- nuclear spin in diamond, http://dx.doi.org/10.48550/arxiv.2203.10283
,2022, On-demand electrical control of spin qubits, http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Implementation of the SMART protocol for global qubit control in silicon, http://dx.doi.org/10.1063/5.0096467
,2021, Quantum Computation Protocol for Dressed Spins in a Global Field, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, The SMART protocol -- Pulse engineering of a global field for robust and universal quantum computation, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org/10.48550/arxiv.2107.14622
,2021, Fast Bayesian tomography of a two-qubit gate set in silicon, http://dx.doi.org/10.1103/PhysRevApplied.17.024068
,2021, Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits, http://arxiv.org/abs/2107.13664v2
,2021, A high-sensitivity charge sensor for silicon qubits above one kelvin, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2020, Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory, http://dx.doi.org/10.1088/1367-2630/ac0abf
,2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.1038/s41467-021-23437-w
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.1038/s41467-021-24371-7
,2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.1038/s41586-020-2171-6
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.1038/s41467-019-14053-w
,2018, Stokes-anti-Stokes correlated photon properties akin to photonic Cooper pairs, http://dx.doi.org/10.48550/arxiv.1810.12461
,2018, Lifting of Spin Blockade by Charged Impurities in Si-MOS Double Quantum Dot Devices, http://dx.doi.org/10.48550/arxiv.1807.11064
,2018, Theory of Hole-Spin Qubits in Strained Germanium Quantum Dots, http://dx.doi.org/10.48550/arxiv.1803.10320
,2017, Adequacy of Si:P Chains as Fermi-Hubbard Simulators, http://dx.doi.org/10.48550/arxiv.1712.03195
,2017, Photonic Counterparts of Cooper Pairs, http://dx.doi.org/10.48550/arxiv.1709.04520
,2016, Donors in Ge as Qubits: Establishing Physical Attributes, http://dx.doi.org/10.48550/arxiv.1608.01270
,2016, Anderson Localization of Electrons in Silicon Donor Chains, http://dx.doi.org/10.48550/arxiv.1603.06936
,2015, Donor Wavefunctions in Si Gauged by STM Images, http://dx.doi.org/10.48550/arxiv.1508.02772
,2015, Transport through an impurity tunnel coupled to a Si/SiGe quantum dot, http://dx.doi.org/10.48550/arxiv.1505.02132
,2015, Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor, http://dx.doi.org/10.48550/arxiv.1504.02997
,