ORCID as entered in ROS

Select Publications
2015, 'Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor', Nano Letters, 15, pp. 4622 - 4627, http://dx.doi.org/10.1021/acs.nanolett.5b01306
,2015, 'Theory of one and two donors in silicon', Journal of Physics Condensed Matter, 27, http://dx.doi.org/10.1088/0953-8984/27/15/154208
,2014, 'An exchange-coupled donor molecule in silicon', Nano Letters, 14, pp. 5672 - 5676, http://dx.doi.org/10.1021/nl5023942
,2014, 'Single-shot readout and relaxation of singlet and triplet states in exchange-coupled P 31 electron spins in silicon', Physical Review Letters, 112, http://dx.doi.org/10.1103/PhysRevLett.112.236801
,2014, 'Splitting valleys in Si/ SiO2: Identification and control of interface states', Physical Review B Condensed Matter and Materials Physics, 89, http://dx.doi.org/10.1103/PhysRevB.89.205307
,2013, 'Genetic design of enhanced valley splitting towards a spin qubit in silicon', Nature Communications, 4, http://dx.doi.org/10.1038/ncomms3396
,2012, 'Impact of the valley degree of freedom on the control of donor electrons near a Si/SiO 2 interface', Physical Review B Condensed Matter and Materials Physics, 86, http://dx.doi.org/10.1103/PhysRevB.86.035317
,2012, 'Valley-based noise-resistant quantum computation using Si quantum dots', Physical Review Letters, 108, http://dx.doi.org/10.1103/PhysRevLett.108.126804
,2011, 'Intervalley coupling for interface-bound electrons in silicon: An effective mass study', Physical Review B Condensed Matter and Materials Physics, 84, http://dx.doi.org/10.1103/PhysRevB.84.155320
,2010, 'Extended interface states enhance valley splitting in Si/ SiO2', Physical Review B Condensed Matter and Materials Physics, 82, http://dx.doi.org/10.1103/PhysRevB.82.245314
,2009, 'Physical mechanisms of interface-mediated intervalley coupling in Si', Physical Review B Condensed Matter and Materials Physics, 80, http://dx.doi.org/10.1103/PhysRevB.80.081305
,2007, 'Reliability of the Heitler-London approach for the exchange coupling between electrons in semiconductor nanostructures', Physical Review B Condensed Matter and Materials Physics, 76, http://dx.doi.org/10.1103/PhysRevB.76.233302
,2024, 'Demonstration of 99.9% single qubit control fidelity of a silicon quantum dot spin qubit made in a 300 mm foundry process', in 2024 IEEE Silicon Nanoelectronics Workshop Snw 2024, pp. 11 - 12, http://dx.doi.org/10.1109/SNW63608.2024.10639218
,2024, 'Electronic Correlations in Multielectron Silicon Quantum Dots', in Proceedings of the IEEE Conference on Nanotechnology, pp. 527 - 532, http://dx.doi.org/10.1109/NANO61778.2024.10628628
,2023, 'Optimization of Silicon MOS Architecture for Self-Referenced Quantum Current Standard', in Proceedings 2023 IEEE International Conference on Quantum Computing and Engineering Qce 2023, pp. 310 - 311, http://dx.doi.org/10.1109/QCE57702.2023.10257
,, 2019, 'Quantum correlations in the stokes-anti-stokes raman scattering: Photonic cooper pairs', in Proceedings Rochester Conference on Coherence and Quantum Optics, CQO 2019
2019, 'Quantum correlations in the stokes-anti-stokes raman scattering: Photonic cooper pairs', in Proceedings Rochester Conference on Coherence and Quantum Optics Cqo 2019
,2019, 'Quantum Correlations in the Stokes-anti-Stokes Raman Scattering: Photonic Cooper pairs', in Optics InfoBase Conference Papers, Rochester, New York United States, presented at CQO-11, Rochester, New York United States, 04 August 2019 - 08 August 2019
,2015, 'A single-molecule transistor in silicon', in 2014 Silicon Nanoelectronics Workshop Snw 2014, http://dx.doi.org/10.1109/SNW.2014.7348581
,2009, 'Quantum control and manipulation of donor electrons in Si-based quantum computing', in Journal of Applied Physics, http://dx.doi.org/10.1063/1.3124084
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org10.21203/rs.3.rs-3057916/v1, https://doi.org/10.21203/rs.3.rs-3057916/v1
,2023, Jellybean Quantum Dots in Silicon for Qubit Coupling and On‐Chip Quantum Chemistry (Adv. Mater. 19/2023), at: https://doi.org/10.1002/adma.202370133
,2025, Enhancement of Electric Drive in Silicon Quantum Dots with Electric Quadrupole Spin Resonance, http://arxiv.org/abs/2502.01040v2
,2024, A 2x2 quantum dot array in silicon with fully tuneable pairwise interdot coupling, http://arxiv.org/abs/2411.13882v2
,2024, CMOS compatibility of semiconductor spin qubits, http://arxiv.org/abs/2409.03993v1
,2024, Violating Bell's inequality in gate-defined quantum dots, http://arxiv.org/abs/2407.15778v2
,2024, Electronic Correlations in Multielectron Silicon Quantum Dots, http://dx.doi.org/10.48550/arxiv.2407.04289
,2023, Entangling gates on degenerate spin qubits dressed by a global field, http://dx.doi.org/10.1038/s41467-024-52010-4
,2023, Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system, http://dx.doi.org/10.1063/5.0179958
,2023, Wavelet correlation noise analysis for qubit operation variable time series, http://dx.doi.org/10.1038/s41598-024-79553-2
,2023, Electrical operation of hole spin qubits in planar MOS silicon quantum dots, http://dx.doi.org/10.48550/arxiv.2309.12243
,2023, Silicon charge pump operation limit above and below liquid helium temperature, http://dx.doi.org/10.1103/PhysRevApplied.21.014040
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, Methods for transverse and longitudinal spin-photon coupling in silicon quantum dots with intrinsic spin-orbit effect, http://arxiv.org/abs/2308.12626v1
,2023, Characterizing non-Markovian Quantum Process by Fast Bayesian Tomography, http://arxiv.org/abs/2307.12452v2
,2023, Improved Single-Shot Qubit Readout Using Twin RF-SET Charge Correlations, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2023, Path integral simulation of exchange interactions in CMOS spin qubits, http://dx.doi.org/10.1103/PhysRevB.108.155413
,2023, Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field, http://dx.doi.org/10.1103/PhysRevB.108.245301
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org/10.1038/s41467-024-48557-x
,2023, Accessing the Full Capabilities of Filter Functions: A Tool for Detailed Noise and Control Susceptibility Analysis, http://dx.doi.org/10.1103/PhysRevA.108.012426
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, http://dx.doi.org/10.1002/adma.202208557
,2022, Control of dephasing in spin qubits during coherent transport in silicon, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2022, Indirect control of the 29SiV- nuclear spin in diamond, http://dx.doi.org/10.48550/arxiv.2203.10283
,2022, On-demand electrical control of spin qubits, http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Implementation of the SMART protocol for global qubit control in silicon, http://dx.doi.org/10.48550/arxiv.2108.00836
,2021, Quantum Computation Protocol for Dressed Spins in a Global Field, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, The SMART protocol -- Pulse engineering of a global field for robust and universal quantum computation, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org/10.48550/arxiv.2107.14622
,2021, Fast Bayesian tomography of a two-qubit gate set in silicon, http://dx.doi.org/10.48550/arxiv.2107.14473
,