ORCID as entered in ROS

Select Publications
2019, 'The potential and design principle for next-generation spectrum-splitting photovoltaics: Targeting 50% efficiency through built-in filters and generalization of concept', Progress in Photovoltaics Research and Applications, 27, pp. 899 - 904, http://dx.doi.org/10.1002/pip.3081
,2019, 'Efficiency improvement in perovskite solar cells by aging and passivation', , pp. 2715 - 2715, http://dx.doi.org/10.11470/jsapmeeting.2019.2.0_2715
,2019, 'Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers', Energy and Environmental Science, 12, pp. 2751 - 2764, http://dx.doi.org/10.1039/c9ee01726g
,2019, 'Fabrication of Efficient and Stable CsPbI3 Perovskite Solar Cells through Cation Exchange Process', Advanced Energy Materials, 9, http://dx.doi.org/10.1002/aenm.201901685
,2019, 'Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells', Nano Energy, 63, http://dx.doi.org/10.1016/j.nanoen.2019.06.049
,2019, 'Pushing to the Limit: Radiative Efficiencies of Recent Mainstream and Emerging Solar Cells', ACS Energy Letters, 4, pp. 1639 - 1644, http://dx.doi.org/10.1021/acsenergylett.9b01128
,2019, 'Photovoltaic technology and visions for the future', Progress in Energy, 1, http://dx.doi.org/10.1088/2516-1083/ab0fa8
,2019, 'Solar cell efficiency tables (version 54)', Progress in Photovoltaics Research and Applications, 27, pp. 565 - 575, http://dx.doi.org/10.1002/pip.3171
,2019, 'Laser-induced aluminium-assisted crystallization of Ge-rich SixGe1-x epitaxy on Si', Thin Solid Films, 679, pp. 55 - 57, http://dx.doi.org/10.1016/j.tsf.2019.04.005
,2019, 'Correction to: Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells (ACS Energy Letters (2017) 2: 10 (2319-2325) DOI: 10.1021/acsenergylett.7b00751)', ACS Energy Letters, 4, pp. 1215, http://dx.doi.org/10.1021/acsenergylett.9b00937
,2019, 'Design of an intermediate Bragg reflector within triple-junction solar cells for spectrum splitting applications', Solar Energy Materials and Solar Cells, 193, pp. 259 - 269, http://dx.doi.org/10.1016/j.solmat.2019.01.011
,2019, 'How Did Solar Cells Get So Cheap?', Joule, 3, pp. 631 - 633, http://dx.doi.org/10.1016/j.joule.2019.02.010
,2019, 'The Impact of a Dynamic Two-Step Solution Process on Film Formation of Cs 0.15 (MA 0.7 FA 0.3 ) 0.85 PbI 3 Perovskite and Solar Cell Performance', Small, 15, http://dx.doi.org/10.1002/smll.201804858
,2019, 'Mixed 3D–2D Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability', , pp. 2186 - 2186, http://dx.doi.org/10.11470/jsapmeeting.2019.1.0_2186
,2019, 'Improvement of Cs-(FAPbI3)0.85(MAPbBr3)0.15 quality via DMSO-molecule-control to increase the efficiency and boost the long-term stability of 1 cm2 sized planar perovskite solar cells', Solar RRL, pp. 1800338 - 1800338, http://dx.doi.org/10.1002/solr.201800338
,2019, 'Beyond 10% efficiency Cu2ZnSnS4 solar cells enabled by modifying the heterojunction interface chemistry', Journal of Materials Chemistry A, 7, pp. 27289 - 27296, http://dx.doi.org/10.1039/c9ta09576d
,2019, 'High open-circuit voltage CuSbS2 solar cells achieved through the formation of epitaxial growth of CdS/CuSbS2 hetero-interface by post-annealing treatment', Progress in Photovoltaics Research and Applications, 27, pp. 37 - 43, http://dx.doi.org/10.1002/pip.3061
,2019, 'Solar cell efficiency tables (Version 53)', Progress in Photovoltaics Research and Applications, 27, pp. 3 - 12, http://dx.doi.org/10.1002/pip.3102
,2018, 'Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm 2 Mesoscopic Perovskite Solar Cells', Joule, 2, pp. 2694 - 2705, http://dx.doi.org/10.1016/j.joule.2018.08.012
,2018, 'Study of sputtered Cu 2 ZnSnS 4 thin films on Si', Applied Surface Science, 459, pp. 700 - 706, http://dx.doi.org/10.1016/j.apsusc.2018.07.192
,2018, 'Enhanced Heterojunction Interface Quality to Achieve 9.3% Efficient Cd-Free Cu2ZnSnS4 Solar Cells Using Atomic Layer Deposition ZnSnO Buffer Layer', Chemistry of Materials, 30, pp. 7860 - 7871, http://dx.doi.org/10.1021/acs.chemmater.8b03398
,2018, '21.8% Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell on 16 cm2', ACS Energy Letters, 3, pp. 2299 - 2300, http://dx.doi.org/10.1021/acsenergylett.8b01382
,2018, 'Extraction of black hole coalescence waveforms from noisy data', PHYSICS LETTERS B, 784, pp. 312 - 323, http://dx.doi.org/10.1016/j.physletb.2018.08.009
,2018, 'Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency', Energy and Environmental Science, 11, pp. 2432 - 2443, http://dx.doi.org/10.1039/c8ee00689j
,2018, 'The Role of Hydrogen from ALD-Al2O3 in Kesterite Cu2ZnSnS4 Solar Cells: Grain Surface Passivation', Advanced Energy Materials, 8, http://dx.doi.org/10.1002/aenm.201701940
,2018, 'Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates', Solar Energy Materials and Solar Cells, 182, pp. 14 - 20, http://dx.doi.org/10.1016/j.solmat.2018.02.036
,2018, 'Scaling limits to large area perovskite solar cell efficiency', Progress in Photovoltaics Research and Applications, 26, pp. 659 - 674, http://dx.doi.org/10.1002/pip.3035
,2018, 'Mixed 3D–2D Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability', Advanced Energy Materials, 8, http://dx.doi.org/10.1002/aenm.201703392
,2018, 'Solar cell efficiency tables (version 52)', Progress in Photovoltaics Research and Applications, 26, pp. 427 - 436, http://dx.doi.org/10.1002/pip.3040
,2018, 'High-voltage p-type PERC solar cells with anchored plating and hydrogenation', Progress in Photovoltaics Research and Applications, 26, pp. 397 - 401, http://dx.doi.org/10.1002/pip.2986
,2018, 'Reduction of Threading Dislocation Density in Sputtered Ge/Si(100) Epitaxial Films by Continuous-Wave Diode Laser-Induced Recrystallization', ACS Applied Energy Materials, 1, pp. 1893 - 1897, http://dx.doi.org/10.1021/acsaem.7b00130
,2018, 'Fabrication of low-defect Ge-rich SiGe-on-insulator by continuous-wave diode laser-induced recrystallization', Journal of Alloys and Compounds, 744, pp. 679 - 682, http://dx.doi.org/10.1016/j.jallcom.2018.02.151
,2018, 'Investigating the effect of silicon thickness on ultra-thin silicon on insulator as a compliant substrate for gallium arsenide heteroepitaxial growth', Thin Solid Films, 653, pp. 371 - 376, http://dx.doi.org/10.1016/j.tsf.2018.03.056
,2018, 'Germanium Template Assisted Integration of Gallium Arsenide Nanocrystals on Silicon: A Versatile Platform for Modern Optoelectronic Materials', Advanced Optical Materials, 6, http://dx.doi.org/10.1002/adom.201701329
,2018, 'Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy', Nano Energy, 46, pp. 356 - 364, http://dx.doi.org/10.1016/j.nanoen.2018.02.024
,2018, 'Humidity-Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells', Advanced Functional Materials, 28, http://dx.doi.org/10.1002/adfm.201705363
,2018, 'The effect of thermal evaporated MoO3 intermediate layer as primary back contact for kesterite Cu2ZnSnS4 solar cells', Thin Solid Films, 648, pp. 39 - 45, http://dx.doi.org/10.1016/j.tsf.2018.01.012
,2018, 'Boosting the kesterite Cu2ZnSnS4 solar cells performance by diode laser annealing', Solar Energy Materials and Solar Cells, 175, pp. 71 - 76, http://dx.doi.org/10.1016/j.solmat.2017.10.009
,2018, 'Solution-Processed, Silver-Doped NiOx as Hole Transporting Layer for High Efficiency Inverted Perovskite Solar Cells', ACS Applied Energy Materials, 1, pp. 561 - 570, http://dx.doi.org/10.1021/acsaem.7b00129
,2018, 'A holistic review of mismatch loss: From manufacturing decision making to losses in fielded arrays', Solar Energy Materials and Solar Cells, 174, pp. 214 - 224, http://dx.doi.org/10.1016/j.solmat.2017.08.041
,2018, 'Balancing electrical and optical losses for efficient 4-terminal Si-perovskite solar cells with solution processed percolation electrodes', Journal of Materials Chemistry A, 6, pp. 3583 - 3592, http://dx.doi.org/10.1039/c7ta10945h
,2018, 'Correction: Balancing electrical and optical losses for efficient 4-terminal Si-perovskite solar cells with solution processed percolation electrodes (Journal of Materials Chemistry A (2018) 6 (3583-3592) DOI: 10.1039/C7TA10945H)', Journal of Materials Chemistry A, 6, pp. 10149, http://dx.doi.org/10.1039/c8ta90069h
,2018, 'Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment', Nature Energy, 3, pp. 764 - 764, http://dx.doi.org/10.1038/s41560-018-0206-0
,2018, 'Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells', Advanced Energy Materials, 8, pp. 1800138 - 1800138, http://dx.doi.org/10.1002/aenm.201800138
,2018, 'Luminescence imaging characterization of perovskite solar cells: A note on the analysis and reporting the results', Advanced Energy Materials, http://dx.doi.org/10.1002/aenm.201702256
,2018, 'Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes', Solar Energy Materials and Solar Cells, 174, pp. 314 - 324, http://dx.doi.org/10.1016/j.solmat.2017.08.038
,2018, 'Self-assembled nanometer-scale ZnS structure at the CZTS/ZnCdS heterointerface for high-efficiency wide band gap Cu 2 ZnSnS 4 solar cells', Chemistry of Materials, 30, pp. 4008 - 4016, http://dx.doi.org/10.1021/acs.chemmater.8b00009
,2018, 'Solar cell efficiency tables (version 51)', Progress in Photovoltaics Research and Applications, 26, pp. 3 - 12, http://dx.doi.org/10.1002/pip.2978
,2017, 'Efficiency Enhancement of Kesterite Cu2ZnSnS4 Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface', ACS Applied Energy Materials, 1, pp. 154 - 160, http://dx.doi.org/10.1021/acsaem.7b00044
,2017, 'Effects of Al thickness on one-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering', Materials Letters, 209, pp. 32 - 35, http://dx.doi.org/10.1016/j.matlet.2017.07.103
,