ORCID as entered in ROS

Select Publications
2022, 'Solar cell efficiency tables (Version 60)', Progress in Photovoltaics Research and Applications, 30, pp. 687 - 701, http://dx.doi.org/10.1002/pip.3595
,2022, 'Revealing the Dynamics of the Thermal Reaction between Copper and Mixed Halide Perovskite Solar Cells', ACS Applied Materials and Interfaces, 14, pp. 20866 - 20874, http://dx.doi.org/10.1021/acsami.2c01061
,2022, 'Passive PV module cooling under free convection through vortex generators', Renewable Energy, 190, pp. 319 - 329, http://dx.doi.org/10.1016/j.renene.2022.03.133
,2022, 'Low-Cost Fabrication of Sb2S3 Solar Cells: Direct Evaporation from Raw Stibnite Ore', Solar Rrl, 6, http://dx.doi.org/10.1002/solr.202100843
,2022, 'Large-Grain Spanning Monolayer Cu2ZnSnSe4 Thin-Film Solar Cells Grown from Metal Precursor', Small, 18, http://dx.doi.org/10.1002/smll.202105044
,2022, '9.6%-Efficient all-inorganic Sb 2 (S,Se) 3 solar cells with a MnS hole-transporting layer', Journal of Materials Chemistry A, 10, pp. 2835 - 2841, http://dx.doi.org/10.1039/d1ta09913b
,2022, 'Improved silicon optical parameters at 25°C, 295 K and 300 K including temperature coefficients', Progress in Photovoltaics Research and Applications, 30, pp. 164 - 179, http://dx.doi.org/10.1002/pip.3474
,2022, 'Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells', Journal of Materials Chemistry A, 10, pp. 2105 - 2112, http://dx.doi.org/10.1039/d1ta08402j
,2022, 'Solar cell efficiency tables (version 59)', Progress in Photovoltaics Research and Applications, 30, pp. 3 - 12, http://dx.doi.org/10.1002/pip.3506
,2022, 'Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells', Nature Energy, http://dx.doi.org/10.1038/s41560-022-01078-7
,2021, 'Recent progress and future prospects of perovskite tandem solar cells', Applied Physics Reviews, 8, http://dx.doi.org/10.1063/5.0061483
,2021, 'Editorial for Stuart Wenham Special Issue', Progress in Photovoltaics Research and Applications, 29, pp. 1147 - 1148, http://dx.doi.org/10.1002/pip.3471
,2021, 'Systematic Efficiency Improvement for Cu2ZnSn(S,Se)4 Solar Cells By Double Cation Incorporation with Cd and Ge', Advanced Functional Materials, 31, http://dx.doi.org/10.1002/adfm.202104528
,2021, 'Peer behaviour boosts recycling', Nature Energy, 6, pp. 862 - 863, http://dx.doi.org/10.1038/s41560-021-00905-7
,2021, 'Immediate and Temporal Enhancement of Power Conversion Efficiency in Surface-Passivated Perovskite Solar Cells', ACS Applied Materials and Interfaces, 13, pp. 39178 - 39185, http://dx.doi.org/10.1021/acsami.1c06878
,2021, 'Singlet fission and tandem solar cells reduce thermal degradation and enhance lifespan', Progress in Photovoltaics Research and Applications, 29, pp. 899 - 906, http://dx.doi.org/10.1002/pip.3405
,2021, 'Solar cell efficiency tables (Version 58)', Progress in Photovoltaics Research and Applications, 29, pp. 657 - 667, http://dx.doi.org/10.1002/pip.3444
,2021, 'Kesterite Solar Cells: Insights into Current Strategies and Challenges', Advanced Science, 8, pp. 2004313, http://dx.doi.org/10.1002/advs.202004313
,2021, 'High Efficiency Cu2ZnSn(S,Se)4 Solar Cells with Shallow LiZn Acceptor Defects Enabled by Solution-Based Li Post-Deposition Treatment', Advanced Energy Materials, 11, http://dx.doi.org/10.1002/aenm.202003783
,2021, 'Elucidating Mechanisms behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar Cells', ACS Energy Letters, 6, pp. 925 - 933, http://dx.doi.org/10.1021/acsenergylett.0c02406
,2021, 'Defect-Resolved Effective Majority Carrier Mobility in Highly Anisotropic Antimony Chalcogenide Thin-Film Solar Cells', Solar Rrl, 5, http://dx.doi.org/10.1002/solr.202000693
,2021, 'Enhanced hole-carrier selectivity in wide bandgap halide perovskite PV devices for indoor IoT applications', Advanced Functional Materials, pp. 2008908 - 2008908, http://dx.doi.org/10.1002/adfm.202008908
,2021, 'Kinetics of light-induced degradation in semi-transparent perovskite solar cells', Solar Energy Materials and Solar Cells, 219, http://dx.doi.org/10.1016/j.solmat.2020.110776
,2021, 'Optical and Thermal Emission Benefits of Differently Textured Glass for Photovoltaic Modules', IEEE Journal of Photovoltaics, 11, pp. 131 - 137, http://dx.doi.org/10.1109/JPHOTOV.2020.3033390
,2021, 'Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time-Resolved Microspectroscopy', Small Methods, 5, http://dx.doi.org/10.1002/smtd.202000731
,2021, 'Solar cell efficiency tables (version 57)', Progress in Photovoltaics Research and Applications, 29, pp. 3 - 15, http://dx.doi.org/10.1002/pip.3371
,2021, 'Front Cover: Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time‐Resolved Microspectroscopy (Small Methods 1/2021)', Small Methods, 5, http://dx.doi.org/10.1002/smtd.202170001
,2020, '11.6% Efficient Pure Sulfide Cu(In,Ga)S2 Solar Cell through a Cu-Deficient and KCN-Free Process', ACS Applied Energy Materials, 3, pp. 11974 - 11980, http://dx.doi.org/10.1021/acsaem.0c02158
,2020, 'Defect Control for 12.5% Efficiency Cu2ZnSnSe4 Kesterite Thin-Film Solar Cells by Engineering of Local Chemical Environment', Advanced Materials, 32, pp. e2005268, http://dx.doi.org/10.1002/adma.202005268
,2020, 'Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies', Materials Today, 41, pp. 120 - 142, http://dx.doi.org/10.1016/j.mattod.2020.09.002
,2020, 'Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency', Nature Energy, 5, pp. 587 - 595, http://dx.doi.org/10.1038/s41560-020-0652-3
,2020, 'Solar cell efficiency tables (version 56)', Progress in Photovoltaics Research and Applications, 28, pp. 629 - 638, http://dx.doi.org/10.1002/pip.3303
,2020, 'Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells', Science, 368, http://dx.doi.org/10.1126/science.aba2412
,2020, 'Quasi-Vertically-Orientated Antimony Sulfide Inorganic Thin-Film Solar Cells Achieved by Vapor Transport Deposition', ACS Applied Materials and Interfaces, 12, pp. 22825 - 22834, http://dx.doi.org/10.1021/acsami.0c02697
,2020, 'Transparent Electrodes Consisting of a Surface-Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four-Terminal Tandem Applications', Small Methods, 4, http://dx.doi.org/10.1002/smtd.202000074
,2020, 'Evidence of Low-Temperature Joints in Silver Nanowire Based Transparent Conducting Layers for Solar Cells', ACS Applied Nano Materials, 3, pp. 3205 - 3213, http://dx.doi.org/10.1021/acsanm.9b02290
,2020, 'Integrated Photorechargeable Energy Storage System: Next-Generation Power Source Driving the Future', Advanced Energy Materials, 10, http://dx.doi.org/10.1002/aenm.201903930
,2020, 'Tracking solar cell conversion efficiency', Nature Reviews Physics, 2, pp. 172 - 173, http://dx.doi.org/10.1038/s42254-020-0163-y
,2020, 'Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammonium-Based Perovskite Solar Cells', Solar Rrl, 4, http://dx.doi.org/10.1002/solr.201900463
,2020, 'Unveiling the Relationship between the Perovskite Precursor Solution and the Resulting Device Performance', Journal of the American Chemical Society, 142, pp. 6251 - 6260, http://dx.doi.org/10.1021/jacs.0c00411
,2020, 'Epitaxial growth of Cu2ZnSnS4 thin film on Si by radio frequency magnetron sputtering', Applied Physics Letters, 116, http://dx.doi.org/10.1063/1.5136289
,2020, 'Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long-Term Stable Perovskite Solar Cell', Advanced Science, 7, http://dx.doi.org/10.1002/advs.201903368
,2020, 'Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution', Nano Energy, 69, http://dx.doi.org/10.1016/j.nanoen.2019.104438
,2020, 'Grain Quality Engineering for Organic Metal Halide Perovskites Using Mixed Antisolvent Spraying Treatment', Solar Rrl, 4, http://dx.doi.org/10.1002/solr.201900397
,2020, 'Solar cell efficiency tables (Version 55)', Progress in Photovoltaics Research and Applications, 28, pp. 3 - 15, http://dx.doi.org/10.1002/pip.3228
,2020, 'Grain Quality Engineering for Organic Metal Halide Perovskites Using Mixed Antisolvent Spraying Treatment', Solar RRL, 4, http://dx.doi.org/10.1002/solr.202070012
,2020, 'Transparent Electrodes Consisting of a Surface‐Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four‐Terminal Tandem Applications (Small Methods 5/2020)', Small Methods, 4, http://dx.doi.org/10.1002/smtd.202070018
,2020, 'Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammonium‐Based Perovskite Solar Cells', Solar RRL, 4, http://dx.doi.org/10.1002/solr.202070043
,2019, 'Deconstruction-assisted perovskite formation for sequential solution processing of Cs0.15(MA0.7FA0.3)0.85PbI3 solar cells', Solar Energy Materials and Solar Cells, 203, http://dx.doi.org/10.1016/j.solmat.2019.110200
,2019, 'Light- and bias-induced structural variations in metal halide perovskites', Nature Communications, 10, http://dx.doi.org/10.1038/s41467-019-08364-1
,