ORCID as entered in ROS

Select Publications
2023, Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon, http://dx.doi.org/10.21203/rs.3.rs-3367541/v1
,2023, Latched Detection of Zeptojoule Spin Echoes with a Kinetic Inductance Parametric Oscillator, http://dx.doi.org/10.48550/arxiv.2311.03702
,2023, Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits, http://dx.doi.org/10.48550/arxiv.2309.15463
,2023, Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon, http://dx.doi.org/10.1002/adma.202405006
,2023, Hyperfine spectroscopy and fast, all-optical arbitrary state initialization and readout of a single, ten-level ${}^{73}$Ge vacancy nuclear spin qudit in diamond, http://dx.doi.org/10.1103/PhysRevLett.132.060603
,2023, Improved placement precision of implanted donor spin qubits in silicon using molecule ions, http://arxiv.org/abs/2308.04117v1
,2023, High-fidelity operation and algorithmic initialisation of spin qubits above one kelvin, http://dx.doi.org/10.1038/s41586-024-07160-2
,2023, Error channels in quantum nondemolition measurements on spin systems, http://dx.doi.org/10.1103/PhysRevB.109.085302
,2023, Single-Step Parity Check Gate Set for Quantum Error Correction, http://dx.doi.org/10.1088/2058-9565/ad473c
,2023, Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields, http://dx.doi.org/10.1038/s41467-024-45368-y
,2023, Robust Macroscopic Schrödinger's Cat on a Nucleus, http://dx.doi.org/10.1103/PhysRevResearch.6.013101
,2023, Assessment of error variation in high-fidelity two-qubit gates in silicon, http://dx.doi.org/10.1038/s41567-024-02614-w
,2022, In-situ amplification of spin echoes within a kinetic inductance parametric amplifier, http://dx.doi.org/10.48550/arxiv.2211.11333
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, http://dx.doi.org/10.1002/adma.202208557
,2022, An electrically-driven single-atom `flip-flop' qubit, http://arxiv.org/abs/2202.04438v3
,2022, Quantum-Coherent Nanoscience, http://dx.doi.org/10.1038/s41565-021-00994-1
,2022, Near-Surface Electrical Characterisation of Silicon Electronic Devices Using Focused keV Ions, http://dx.doi.org/10.1103/PhysRevApplied.18.034037
,2022, On-demand electrical control of spin qubits, http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Beating the thermal limit of qubit initialization with a Bayesian Maxwell's demon, http://dx.doi.org/10.1103/PhysRevX.12.041008
,2021, Engineering local strain for single-atom nuclear acoustic resonance in silicon, http://dx.doi.org/10.1063/5.0069305
,2021, A near-ideal degenerate parametric amplifier, http://dx.doi.org/10.1103/PhysRevApplied.17.034064
,2021, Precision tomography of a three-qubit donor quantum processor in silicon, http://dx.doi.org/10.1038/s41586-021-04292-7
,2021, Fast coherent control of an NV- spin ensemble using a KTaO3 dielectric resonator at cryogenic temperatures, http://dx.doi.org/10.1103/PhysRevApplied.16.044051
,2020, Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory, http://dx.doi.org/10.1088/1367-2630/ac0abf
,2020, An ultra-stable 1.5 tesla permanent magnet assembly for qubit experiments at cryogenic temperatures, http://dx.doi.org/10.1063/5.0055318
,2020, Donor spins in silicon for quantum technologies, http://dx.doi.org/10.1002/qute.202000005
,2020, Deterministic Single Ion Implantation with 99.87% Confidence for Scalable Donor-Qubit Arrays in Silicon, http://dx.doi.org/10.1002/adma.202103235
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.1038/s41467-021-24371-7
,2020, Spin thermometry and spin relaxation of optically detected Cr3+ ions in ruby Al2O3, http://dx.doi.org/10.1103/PhysRevB.102.104114
,2020, Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device, http://dx.doi.org/10.1038/s41467-020-20424-5
,2020, Semiconductor Qubits In Practice, http://dx.doi.org/10.1038/s42254-021-00283-9
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, Measuring out-of-time-ordered correlation functions without reversing time evolution, http://dx.doi.org/10.1103/PhysRevA.106.042429
,2019, Controllable freezing of the nuclear spin bath in a single-atom spin qubit, http://dx.doi.org/10.1126/sciadv.aba3442
,2019, Coherent electrical control of a single high-spin nucleus in silicon, http://dx.doi.org/10.1038/s41586-020-2057-7
,2019, A silicon quantum-dot-coupled nuclear spin qubit, http://dx.doi.org/10.48550/arxiv.1904.08260
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.48550/arxiv.1902.09126
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.1038/s41467-019-14053-w
,2018, Single-spin qubits in isotopically enriched silicon at low magnetic field, http://dx.doi.org/10.48550/arxiv.1812.08347
,2018, Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices, http://dx.doi.org/10.48550/arxiv.1812.06644
,2018, Gate-based single-shot readout of spins in silicon, http://dx.doi.org/10.48550/arxiv.1809.01864
,2018, Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction, http://dx.doi.org/10.48550/arxiv.1807.10415
,2018, Silicon qubit fidelities approaching incoherent noise limits via pulse engineering, http://dx.doi.org/10.48550/arxiv.1807.09500
,2018, Fidelity benchmarks for two-qubit gates in silicon, http://dx.doi.org/10.48550/arxiv.1805.05027
,2018, Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy, http://dx.doi.org/10.48550/arxiv.1803.01609
,2017, Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout, http://dx.doi.org/10.48550/arxiv.1708.03445
,2017, Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.1706.08095
,2017, Exploring quantum chaos with a single nuclear spin, http://dx.doi.org/10.48550/arxiv.1703.04852
,