Select Publications
Journal articles
, 2025, 'Bell inequality violation in gate-defined quantum dots', Nature Communications, 16, http://dx.doi.org/10.1038/s41467-025-57987-0
, 2025, 'Scalable entanglement of nuclear spins mediated by electron exchange', Science, 389, pp. 1234 - 1238, http://dx.doi.org/10.1126/science.ady3799
, 2025, 'Roadmap on atomic-scale semiconductor devices', Nano Futures, 9, http://dx.doi.org/10.1088/2399-1984/ada901
, 2025, 'Certifying the quantumness of a nuclear spin qudit through its uniform precession', Newton, 1, http://dx.doi.org/10.1016/j.newton.2025.100017
, 2025, 'Schrödinger cat states of a nuclear spin qudit in silicon', Nature Physics, 21, pp. 362 - 367, http://dx.doi.org/10.1038/s41567-024-02745-0
, 2024, 'Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-45368-y
, 2024, 'Strong microwave squeezing above 1 Tesla and 1 Kelvin', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48519-3
, 2024, 'Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52795-4
, 2024, 'Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots', Nature Physics, 20, pp. 1804 - 1809, http://dx.doi.org/10.1038/s41567-024-02614-w
, 2024, 'Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202405006
, 2024, 'Single-step parity check gate set for quantum error correction', Quantum Science and Technology, 9, http://dx.doi.org/10.1088/2058-9565/ad473c
, 2024, 'Latched detection of zeptojoule spin echoes with a kinetic inductance parametric oscillator', Science Advances, 10, http://dx.doi.org/10.1126/sciadv.adm7624
, 2024, 'High-fidelity spin qubit operation and algorithmic initialization above 1 K', Nature, 627, pp. 772 - 777, http://dx.doi.org/10.1038/s41586-024-07160-2
, 2024, 'Improved Placement Precision of Donor Spin Qubits in Silicon using Molecule Ion Implantation', Advanced Quantum Technologies, 7, http://dx.doi.org/10.1002/qute.202300316
, 2024, 'Error channels in quantum nondemolition measurements on spin systems', Physical Review B, 109, http://dx.doi.org/10.1103/PhysRevB.109.085302
, 2024, 'Hyperfine Spectroscopy and Fast, All-Optical Arbitrary State Initialization and Readout of a Single, Ten-Level Ge 73 Vacancy Nuclear Spin Qudit in Diamond', Physical Review Letters, 132, http://dx.doi.org/10.1103/PhysRevLett.132.060603
, 2024, 'Robust macroscopic Schrödinger's cat on a nucleus', Physical Review Research, 6, http://dx.doi.org/10.1103/PhysRevResearch.6.013101
, 2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208557
, 2023, 'In situ amplification of spin echoes within a kinetic inductance parametric amplifier', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.adg1593
, 2023, 'An electrically driven single-atom “flip-flop” qubit', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.add9408
, 2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
, 2022, 'Beating the Thermal Limit of Qubit Initialization with a Bayesian Maxwell's Demon', Physical Review X, 12, http://dx.doi.org/10.1103/PhysRevX.12.041008
, 2022, 'Measuring out-of-time-ordered correlation functions without reversing time evolution', Physical Review A, 106, http://dx.doi.org/10.1103/PhysRevA.106.042429
, 2022, 'Near-Surface Electrical Characterization of Silicon Electronic Devices Using Focused keV-Range Ions', Physical Review Applied, 18, http://dx.doi.org/10.1103/PhysRevApplied.18.034037
, 2022, 'Degenerate Parametric Amplification via Three-Wave Mixing Using Kinetic Inductance', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.034064
, 2022, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348 - 353, http://dx.doi.org/10.1038/s41586-021-04292-7
, 2022, 'Deterministic Shallow Dopant Implantation in Silicon with Detection Confidence Upper-Bound to 99.85% by Ion–Solid Interactions', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202103235
, 2022, 'Development of an Undergraduate Quantum Engineering Degree', IEEE Transactions on Quantum Engineering, 3, http://dx.doi.org/10.1109/TQE.2022.3157338
, 2022, 'Deterministic Shallow Dopant Implantation in Silicon with Detection Confidence Upper‐Bound to 99.85% by Ion–Solid Interactions (Adv. Mater. 3/2022)', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202270022
, 2021, 'Coherent spin qubit transport in silicon', Nature Communications, 12, pp. 4114, http://dx.doi.org/10.1038/s41467-021-24371-7
, 2021, 'Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device', Nature Communications, 12, pp. 181, http://dx.doi.org/10.1038/s41467-020-20424-5
, 2021, 'Quantum-coherent nanoscience', Nature Nanotechnology, 16, pp. 1318 - 1329, http://dx.doi.org/10.1038/s41565-021-00994-1
, 2021, 'Engineering local strain for single-atom nuclear acoustic resonance in silicon', Applied Physics Letters, 119, http://dx.doi.org/10.1063/5.0069305
, 2021, 'Fast Coherent Control of a Nitrogen-Vacancy-Center Spin Ensemble Using a Dielectric Resonator at Cryogenic Temperatures', Physical Review Applied, 16, http://dx.doi.org/10.1103/PhysRevApplied.16.044051
, 2021, 'An ultra-stable 1.5 T permanent magnet assembly for qubit experiments at cryogenic temperatures', Review of Scientific Instruments, 92, http://dx.doi.org/10.1063/5.0055318
, 2021, 'Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory', New Journal of Physics, 23, http://dx.doi.org/10.1088/1367-2630/ac0abf
, 2021, 'Semiconductor qubits in practice', Nature Reviews Physics, 3, pp. 157 - 177, http://dx.doi.org/10.1038/s42254-021-00283-9
, 2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
, 2021, 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control', Prx Quantum, 2, http://dx.doi.org/10.1103/PRXQuantum.2.010303
, 2020, 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-019-14053-w
, 2020, 'Donor Spins in Silicon for Quantum Technologies', Advanced Quantum Technologies, 3, http://dx.doi.org/10.1002/qute.202000005
, 2020, 'Spin thermometry and spin relaxation of optically detected Cr3+ ions in ruby Al2 O3', Physical Review B, 102, http://dx.doi.org/10.1103/PhysRevB.102.104114
, 2020, 'Controllable freezing of the nuclear spin bath in a single-atom spin qubit', Science Advances, 6, http://dx.doi.org/10.1126/sciadv.aba3442
, 2020, 'Operation of a silicon quantum processor unit cell above one kelvin', Nature, 580, pp. 350 - 354, http://dx.doi.org/10.1038/s41586-020-2171-6
, 2020, 'Coherent electrical control of a single high-spin nucleus in silicon', Nature, 579, pp. 205 - 209, http://dx.doi.org/10.1038/s41586-020-2057-7
, 2020, 'A silicon quantum-dot-coupled nuclear spin qubit', Nature Nanotechnology, 15, pp. 13 - 17, http://dx.doi.org/10.1038/s41565-019-0587-7
, 2019, 'Single-spin qubits in isotopically enriched silicon at low magnetic field', Nature Communications, 10, http://dx.doi.org/10.1038/s41467-019-13416-7
, 2019, 'Fidelity benchmarks for two-qubit gates in silicon', Nature, 569, pp. 532 - 536, http://dx.doi.org/10.1038/s41586-019-1197-0
, 2019, 'Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices', Physical Review B, 99, http://dx.doi.org/10.1103/PhysRevB.99.205306
, 2019, 'Controlling Spin-Orbit Interactions in Silicon Quantum Dots Using Magnetic Field Direction', Physical Review X, 9, http://dx.doi.org/10.1103/PhysRevX.9.021028