Select Publications

Journal articles

Beves JE; Constable EC; Housecroft CE; Neuburger M; Schaffner S; Zampese JA, 2008, '4′-Chloro-2,2′:6′,2″-terpyridine (L): ethyl sulfate salts of [H2L]2+ and the single crystal structures of [H2L][EtOSO3]Cl · H2O and [ML2][PF6]2 with M = Fe and Ru', Inorganic Chemistry Communications, 11, pp. 1006 - 1008, http://dx.doi.org/10.1016/j.inoche.2008.04.026

Beves JE; Chwalisz P; Constable EC; Housecroft CE; Neuburger M; Schaffner S; Zampese JA, 2008, 'A new polymorph of 4′-tolyl-2,2′:6′,2′′-terpyridine (ttpy) and the single crystal structures of [Fe(ttpy)2][PF6]2 and [Ru(ttpy)2][PF6]2', Inorganic Chemistry Communications, 11, pp. 1009 - 1011, http://dx.doi.org/10.1016/j.inoche.2008.04.033

Beves JE; Constable EC; Housecroft CE; Neuburger M; Schaffner S, 2008, 'A pyrazolyl-terminated 2,2′:6′,2″-terpyridine ligand: Iron(II), ruthenium(II) and palladium(II) complexes of 4′-(3,5-dimethylpyrazol-1-yl)-2,2′:6′,2″-terpyridine', Polyhedron, 27, pp. 2395 - 2401, http://dx.doi.org/10.1016/j.poly.2008.04.022

Beves JE; Constable EC; Decurtins S; Dunphy EL; Housecroft CE; Keene TD; Neuburger M; Schaffner S, 2008, 'Homoleptic metal complexes of 4′-(5-pyrimidinyl)-2,2′:6′, 2″-terpyridine: Tetrafurcated expanded ligands', Crystengcomm, 10, pp. 986 - 990, http://dx.doi.org/10.1039/b807193b

Beves JE; Constable EC; Housecroft CE; Neuburger M; Schaffner S; Zampese JA, 2008, '4′-hydrazone derivatives of 2,2′:6′,2″-terpyridine: Protonation and substituent effects', European Journal of Organic Chemistry, pp. 3569 - 3581, http://dx.doi.org/10.1002/ejoc.200800301

Beves JE; Bray DJ; Clegg JK; Constable EC; Housecroft CE; Jolliffe KA; Kepert CJ; Lindoy LF; Neuburger M; Price DJ; Schaffner S; Schaper F, 2008, 'Expanding the 4,4′-bipyridine ligand: Structural variation in {M(pytpy)2}2+ complexes (pytpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, M = Fe, Ni, Ru) and assembly of the hydrogen-bonded, one-dimensional polymer {[Ru (pytpy) (Hpytpy)]}n3 n+', Inorganica Chimica Acta, 361, pp. 2582 - 2590, http://dx.doi.org/10.1016/j.ica.2007.10.040

Beves JE; Constable EC; Housecroft CE; Neuburger M; Schaffner S, 2008, 'A one-dimensional copper(ii) coordination polymer containing [Fe(pytpy)2]2+ (pytpy = 4′-(4-pyridyl)-2,2′: 6′,2″-terpyridine) as an expanded 4,4′-bipyridine ligand: A hydrogen-bonded network penetrated by rod-like polymers', Crystengcomm, 10, pp. 344 - 348, http://dx.doi.org/10.1039/b713001e

Beves JE; Dunphy EL; Constable EC; Housecroft CE; Kepert CJ; Neuburger M; Price DJ; Schaffner S, 2008, 'Vectorial property dependence in bis{4′-(n-pyridyl)-2,2′: 6′,2″-terpyridine}iron(ii) and ruthenium(ii) complexes with n = 2, 3 and 4', Dalton Transactions, pp. 386 - 396, http://dx.doi.org/10.1039/b714970k

Beves JE; Constable EC; Housecroft CE; Kepert CJ; Neuburger M; Price DJ; Schaffner S, 2007, 'The conjugate acid of bis{4′-(4-pyridyl)-2,2′:6′, 2″-terpyridine}iron(ii) as a self-complementary hydrogen-bonded building block', Crystengcomm, 9, pp. 1073 - 1077, http://dx.doi.org/10.1039/b710332h

Beves JE; Constable EC; Housecroft CE; Neuburger M; Schaffner S, 2007, 'A palladium(II) complex of 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine: Lattice control through an interplay of stacking and hydrogen bonding effects', Inorganic Chemistry Communications, 10, pp. 1185 - 1188, http://dx.doi.org/10.1016/j.inoche.2007.07.005

Beves JE; Constable EC; Housecroft CE; Kepert CJ; Price DJ, 2007, 'The first example of a coordination polymer from the expanded 4,4′-bipyridine ligand Ru(pytpy)22+ (pytpy = 4′-(4-pyridyl)-2,2′6′,2″-terpyridine)', Crystengcomm, 9, pp. 353 - 357, http://dx.doi.org/10.1039/b702560b

Beves JE; Constable EC; Housecroft CE; Neuburger M; Schaffner S; Shardlow EJ, 2007, '[n + n]-Heterometallomacrocyclic complexes (n ≥ 2) prepared from platinum(ii)-centred ditopic 2,2′:6′,2′-terpyridine ligands: Dimensional cataloguing by pulsed-field gradient spin-echo NMR spectroscopy', Journal of the Chemical Society. Dalton Transactions, pp. 1593 - 1602, http://dx.doi.org/10.1039/b618197j

Beves JE; Constable EC; Housecroft CE; Kepert CJ; Price DJ, 2007, 'The first example of a coordination polymer from the expanded 4,4′-bipyridine ligand Ru(pytpy)22+ (pytpy = 4′-(4-pyridyl)-2,2′6′,2″-terpyridine)', Crystengcomm, 9, pp. 456 - 459, http://dx.doi.org/10.1039/b703622a

Beves JE; Constable EC; Housecroft CE; Neuburger M; Schaffner S, 2006, '4′-Chloro-2,2′:6′,2″-terpyridine', Acta Crystallographica Section E Structure Reports Online, 62, pp. o2497 - o2498, http://dx.doi.org/10.1107/S1600536806019180

Beyes JE; Chapman BE; Kuchel PW; Lindoy LF; McMurtrie J; McPartlin M; Thordarson P; Wei G, 2006, 'New discrete metallocycles incorporating palladium(II) and platinum(II) corners and dipyridyldibenzotetra-aza[14]annulene side units', Journal of the Chemical Society - Dalton Transactions, pp. 744 - 750

Conference Papers

de Clercq D; Carwithen B; Hosseinabadi P; Nielsen M; Brett M; Prasad S; Farahani A; Li H; Feng J; Beves J; Ekins-Daukes N; Cole J; Thordarson P; Tayebjee M; Schmidt T; Sanders S, 2024, 'Resolving the emissive intermediate in singlet fission', in Proceedings of the International Conference on Hybrid and Organic Photovoltaics, FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, presented at International Conference on Hybrid and Organic Photovoltaics, 12 May 2024 - 15 May 2024, http://dx.doi.org/10.29363/nanoge.hopv.2024.011

Schmidt TW; Tayebjee MJY; Nielsen MP; McCamey DR; Ekins-Daukes N; Baldacchino A; Mo A; Brett MW; Pearce PM; Ciesla AM; Chang NL; Hoex B; Beves JE; Jiang Y; McNab S; Carwithen BP; de Clercq DM; Tong J, 2024, 'Singlet fission solar cells', in Freundlich A; Hinzer K; Collin S; Sellers IR (eds.), Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XIII, SPIE, pp. 2 - 2, presented at Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XIII, 27 January 2024 - 01 February 2024, http://dx.doi.org/10.1117/12.3003348

Ayme J-F; Beves JE; Campbell CJ; Leigh DA; Slawin AMZ, 2012, 'Synthesis of topologically complex molecules', in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC, PA, Philadelphia, presented at 244th National Fall Meeting of the American-Chemical-Society (ACS), PA, Philadelphia, 19 August 2012 - 23 August 2012

Working Papers

Kennedy A; DiNardi R; Fillbrook L; Donald W; Beves J, 2021, Visible light switching of metallosupramolecular assemblies, http://dx.doi.org10.33774/chemrxiv-2021-rfd1m, https://doi.org/10.33774/chemrxiv-2021-rfd1m

Preprints

Chak MH; Wimberger L; Richardson B; Johansson EMV; Violi JP; Sokolova A; Frisch H; Donald WA; Stenzel MH; Andréasson J; Beves J, 2025, Photoswitchable merocyanine-amphiphiles with programmable self-assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n-v3

Chak MH; Wimberger L; Richardson B; Johansson EMV; Violi JP; Sokolova A; Frisch H; Donald WA; Stenzel MH; Andréasson J; Beves J, 2025, Photoswitchable merocyanine-amphiphiles with programmable self-assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n-v2

Ishwara T; de Clercq D; Carwithen B; Mikhailova J; Brett M; Mena A; Khoury T; Hansen C; McCamey D; Tayebjee M; Beves J; Huang D; Nielsen M; Crossley M; Schmidt T, 2025, Solid-state sensitized liquid-chromophore triplet fusion upconversion, http://dx.doi.org/10.26434/chemrxiv-2025-k36zk

Chak MH; Wimberger L; Richardson B; Johansson EMV; Violi JP; Sokolova A; Frisch H; Donald WA; Stenzel MH; Andréasson J; Beves J, 2025, Photoresponsive assemblies of spiropyran-amphiphiles with programmable assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n

Sarma KA; Middleton IA; Chak MH; Violi JP; Bhadbhade M; Beves J, 2025, Ruthenium(II) complexes with photoswitchable and photoejectable ligands, http://dx.doi.org/10.26434/chemrxiv-2025-3sffc

Fillbrook LL; Middleton IA; Rashidnejad H; Sapre A; Sen A; Beves J; Schmidt T, 2025, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2-v3

Fillbrook LL; Middleton IA; Rashidnejad H; Sapre A; Sen A; Beves J, 2024, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2-v2

Beves J; Fillbrook LL; Middleton IA; Rashidnejad H; Sapre A; Sen A, 2024, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2

DiNardi RG; Rasheed S; Capomolla SS; Chak MH; Middleton IA; Macreadie LK; Violi JP; Donald WA; Lusby PJ; Beves JE, 2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v5

DiNardi RG; Rasheed S; Capomolla SS; Chak MH; Middleton IA; Macreadie LK; Violi JP; Donald WA; Lusby PJ; Beves JE, 2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v4

DiNardi RG; Rasheed S; Capomolla SS; Chak MH; Middleton IA; Macreadie LK; Violi JP; Donald WA; Lusby PJ; Beves JE, 2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v3

Baumgartner B; Glembockyte V; Gonzalez-Hernandez AJ; Valavalkar A; Mayer RJ; Fillbrook LL; Müller-Deku A; Zhang J; Steiner F; Gross C; Reynders M; Munguba H; Arefin A; Ofial A; Beves JE; Lohmueller T; Dietzek-Ivanšic B; Broichhagen J; Tinnefeld P; Levitz J; Thorn-Seshold O, 2024, A general method for near-infrared photoswitching in biology, demonstrated by the >700 nm photocontrol of GPCR activity in brain slices, http://dx.doi.org/10.26434/chemrxiv-2024-vm4n3

DiNardi RG; Rasheed S; Capomolla SS; Chak MH; Middleton IA; Macreadie LK; Violi JP; Donald WA; Lusby PJ; Beves JE, 2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v2

DiNardi RG; Rasheed S; Capomolla SS; Chak MH; Middleton IA; Macreadie LK; Violi JP; Donald WA; Lusby PJ; Beves JE, 2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj

Feng J; Hosseinabadi P; de Clercq D; Nielsen M; Brett M; Prasad S; Farahani A; Li H; Sanders S; Beves J; Ekins-Daukes N; Cole J; Thordarson P; Tayebjee M; Schmidt T, 2023, Observation of an emissive intermediate in a liquid singlet fission and triplet fusion system at room temperature, http://dx.doi.org/10.26434/chemrxiv-2023-vn492

Wimberger L; Rizzuto F; Beves J, 2022, Modulating the lifetime of DNA motifs using visible light and small molecules, http://dx.doi.org/10.26434/chemrxiv-2022-q2413-v2

Wimberger L; Rizzuto F; Beves J, 2022, Modulating the lifetime of DNA motifs using visible light and small molecules, http://dx.doi.org/10.26434/chemrxiv-2022-q2413

DiNardi R; Douglas AO; Tian R; Price J; Tajik M; Donald WA; Beves J, 2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v4

DiNardi R; Douglas AO; Tian R; Price J; Tajik M; Donald WA; Beves J, 2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v3

DiNardi R; Douglas AO; Tian R; Price J; Tajik M; Donald WA; Beves J, 2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v2

DiNardi R; Douglas AO; Tian R; Price J; Tajik M; Donald WA; Beves J, 2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k

Beves J; Wimberger L; Andréasson J, 2022, Basic-to-acidic reversible pH switching with a merocyanine photoacid, http://dx.doi.org/10.26434/chemrxiv-2022-wnts7

Kennedy A; DiNardi R; Fillbrook L; Donald W; Beves J, 2021, Visible light switching of metallosupramolecular assemblies, http://dx.doi.org/10.26434/chemrxiv-2021-rfd1m

Wimberger L; Prasad S; Andréasson J; Schmidt T; Beves J, 2021, Large, tunable and reversible pH changes by spiropyran photoacids, http://dx.doi.org/10.26434/chemrxiv-2021-gppx1

Fillbrook L; Günther J-P; Majer G; Price W; Fischer P; Beves J, 2021, Errors in the Use of NMR to Test Molecular Mobility during a Chemical Reaction, http://dx.doi.org/10.26434/chemrxiv.14306771.v1

MacDonald T; Schmidt T; Beves J, 2020, An All-Photonic Molecular Amplifier and Binary Flip-flop, http://dx.doi.org/10.26434/chemrxiv.13277855.v2

Günther J-P; Fillbrook L; MacDonald T; Majer G; Price W; Fischer P; Beves J, 2020, Comment on “Boosted Molecular Mobility During Common Chemical Reactions", http://dx.doi.org/10.26434/chemrxiv.13023164.v1

MacDonald T; Feringa B; Price W; Wezenberg S; Beves J, 2020, Controlled Diffusion of Photoswitchable Receptors by Binding Antielectrostatic Phosphate Oligomers, http://dx.doi.org/10.26434/chemrxiv.12298919.v1

Larik F; Fillbrook L; Nurttila S; Martin AD; Kuchel RP; Taief KA; Bhadbhade M; Beves J; Thordarson P, 2020, Ultra-Low Molecular Weight Photoswitchable Hydrogelators, http://dx.doi.org/10.26434/chemrxiv.12950858.v4

MacDonald T; Price WS; Astumian RD; Beves J, 2019, Enhanced Diffusion of Molecular Catalysts Is Due to Convection, http://dx.doi.org/10.26434/chemrxiv.8259317.v1

Hakonen A; Beves JE, 2018, Hue Parameter Fluorescence Identification of Edible Oils with a Smartphone, http://dx.doi.org/10.26434/chemrxiv.6854486.v1


Back to profile page