ORCID as entered in ROS

Select Publications
2008, '4′-Chloro-2,2′:6′,2″-terpyridine (L): ethyl sulfate salts of [H2L]2+ and the single crystal structures of [H2L][EtOSO3]Cl · H2O and [ML2][PF6]2 with M = Fe and Ru', Inorganic Chemistry Communications, 11, pp. 1006 - 1008, http://dx.doi.org/10.1016/j.inoche.2008.04.026
,2008, 'A new polymorph of 4′-tolyl-2,2′:6′,2′′-terpyridine (ttpy) and the single crystal structures of [Fe(ttpy)2][PF6]2 and [Ru(ttpy)2][PF6]2', Inorganic Chemistry Communications, 11, pp. 1009 - 1011, http://dx.doi.org/10.1016/j.inoche.2008.04.033
,2008, 'A pyrazolyl-terminated 2,2′:6′,2″-terpyridine ligand: Iron(II), ruthenium(II) and palladium(II) complexes of 4′-(3,5-dimethylpyrazol-1-yl)-2,2′:6′,2″-terpyridine', Polyhedron, 27, pp. 2395 - 2401, http://dx.doi.org/10.1016/j.poly.2008.04.022
,2008, 'Homoleptic metal complexes of 4′-(5-pyrimidinyl)-2,2′:6′, 2″-terpyridine: Tetrafurcated expanded ligands', Crystengcomm, 10, pp. 986 - 990, http://dx.doi.org/10.1039/b807193b
,2008, '4′-hydrazone derivatives of 2,2′:6′,2″-terpyridine: Protonation and substituent effects', European Journal of Organic Chemistry, pp. 3569 - 3581, http://dx.doi.org/10.1002/ejoc.200800301
,2008, 'Expanding the 4,4′-bipyridine ligand: Structural variation in {M(pytpy)2}2+ complexes (pytpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, M = Fe, Ni, Ru) and assembly of the hydrogen-bonded, one-dimensional polymer {[Ru (pytpy) (Hpytpy)]}n3 n+', Inorganica Chimica Acta, 361, pp. 2582 - 2590, http://dx.doi.org/10.1016/j.ica.2007.10.040
,2008, 'A one-dimensional copper(ii) coordination polymer containing [Fe(pytpy)2]2+ (pytpy = 4′-(4-pyridyl)-2,2′: 6′,2″-terpyridine) as an expanded 4,4′-bipyridine ligand: A hydrogen-bonded network penetrated by rod-like polymers', Crystengcomm, 10, pp. 344 - 348, http://dx.doi.org/10.1039/b713001e
,2008, 'Vectorial property dependence in bis{4′-(n-pyridyl)-2,2′: 6′,2″-terpyridine}iron(ii) and ruthenium(ii) complexes with n = 2, 3 and 4', Dalton Transactions, pp. 386 - 396, http://dx.doi.org/10.1039/b714970k
,2007, 'The conjugate acid of bis{4′-(4-pyridyl)-2,2′:6′, 2″-terpyridine}iron(ii) as a self-complementary hydrogen-bonded building block', Crystengcomm, 9, pp. 1073 - 1077, http://dx.doi.org/10.1039/b710332h
,2007, 'A palladium(II) complex of 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine: Lattice control through an interplay of stacking and hydrogen bonding effects', Inorganic Chemistry Communications, 10, pp. 1185 - 1188, http://dx.doi.org/10.1016/j.inoche.2007.07.005
,2007, 'The first example of a coordination polymer from the expanded 4,4′-bipyridine ligand Ru(pytpy)22+ (pytpy = 4′-(4-pyridyl)-2,2′6′,2″-terpyridine)', Crystengcomm, 9, pp. 353 - 357, http://dx.doi.org/10.1039/b702560b
,2007, '[n + n]-Heterometallomacrocyclic complexes (n ≥ 2) prepared from platinum(ii)-centred ditopic 2,2′:6′,2′-terpyridine ligands: Dimensional cataloguing by pulsed-field gradient spin-echo NMR spectroscopy', Journal of the Chemical Society. Dalton Transactions, pp. 1593 - 1602, http://dx.doi.org/10.1039/b618197j
,2007, 'The first example of a coordination polymer from the expanded 4,4′-bipyridine ligand Ru(pytpy)22+ (pytpy = 4′-(4-pyridyl)-2,2′6′,2″-terpyridine)', Crystengcomm, 9, pp. 456 - 459, http://dx.doi.org/10.1039/b703622a
,2006, '4′-Chloro-2,2′:6′,2″-terpyridine', Acta Crystallographica Section E Structure Reports Online, 62, pp. o2497 - o2498, http://dx.doi.org/10.1107/S1600536806019180
,2006, 'New discrete metallocycles incorporating palladium(II) and platinum(II) corners and dipyridyldibenzotetra-aza[14]annulene side units', Journal of the Chemical Society - Dalton Transactions, pp. 744 - 750
,2024, 'Resolving the emissive intermediate in singlet fission', in Proceedings of the International Conference on Hybrid and Organic Photovoltaics, FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, presented at International Conference on Hybrid and Organic Photovoltaics, 12 May 2024 - 15 May 2024, http://dx.doi.org/10.29363/nanoge.hopv.2024.011
,2024, 'Singlet fission solar cells', in Freundlich A; Hinzer K; Collin S; Sellers IR (eds.), Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XIII, SPIE, pp. 2 - 2, presented at Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XIII, 27 January 2024 - 01 February 2024, http://dx.doi.org/10.1117/12.3003348
,2012, 'Synthesis of topologically complex molecules', in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC, PA, Philadelphia, presented at 244th National Fall Meeting of the American-Chemical-Society (ACS), PA, Philadelphia, 19 August 2012 - 23 August 2012
,2021, Visible light switching of metallosupramolecular assemblies, http://dx.doi.org10.33774/chemrxiv-2021-rfd1m, https://doi.org/10.33774/chemrxiv-2021-rfd1m
,2025, Photoswitchable merocyanine-amphiphiles with programmable self-assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n-v3
,2025, Photoswitchable merocyanine-amphiphiles with programmable self-assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n-v2
,2025, Solid-state sensitized liquid-chromophore triplet fusion upconversion, http://dx.doi.org/10.26434/chemrxiv-2025-k36zk
,2025, Photoresponsive assemblies of spiropyran-amphiphiles with programmable assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n
,2025, Ruthenium(II) complexes with photoswitchable and photoejectable ligands, http://dx.doi.org/10.26434/chemrxiv-2025-3sffc
,2025, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2-v3
,2024, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2-v2
,2024, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v5
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v4
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v3
,2024, A general method for near-infrared photoswitching in biology, demonstrated by the >700 nm photocontrol of GPCR activity in brain slices, http://dx.doi.org/10.26434/chemrxiv-2024-vm4n3
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v2
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj
,2023, Observation of an emissive intermediate in a liquid singlet fission and triplet fusion system at room temperature, http://dx.doi.org/10.26434/chemrxiv-2023-vn492
,2022, Modulating the lifetime of DNA motifs using visible light and small molecules, http://dx.doi.org/10.26434/chemrxiv-2022-q2413-v2
,2022, Modulating the lifetime of DNA motifs using visible light and small molecules, http://dx.doi.org/10.26434/chemrxiv-2022-q2413
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v4
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v3
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v2
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k
,2022, Basic-to-acidic reversible pH switching with a merocyanine photoacid, http://dx.doi.org/10.26434/chemrxiv-2022-wnts7
,2021, Visible light switching of metallosupramolecular assemblies, http://dx.doi.org/10.26434/chemrxiv-2021-rfd1m
,2021, Large, tunable and reversible pH changes by spiropyran photoacids, http://dx.doi.org/10.26434/chemrxiv-2021-gppx1
,2021, Errors in the Use of NMR to Test Molecular Mobility during a Chemical Reaction, http://dx.doi.org/10.26434/chemrxiv.14306771.v1
,2020, An All-Photonic Molecular Amplifier and Binary Flip-flop, http://dx.doi.org/10.26434/chemrxiv.13277855.v2
,2020, Comment on “Boosted Molecular Mobility During Common Chemical Reactions", http://dx.doi.org/10.26434/chemrxiv.13023164.v1
,2020, Controlled Diffusion of Photoswitchable Receptors by Binding Antielectrostatic Phosphate Oligomers, http://dx.doi.org/10.26434/chemrxiv.12298919.v1
,2020, Ultra-Low Molecular Weight Photoswitchable Hydrogelators, http://dx.doi.org/10.26434/chemrxiv.12950858.v4
,2019, Enhanced Diffusion of Molecular Catalysts Is Due to Convection, http://dx.doi.org/10.26434/chemrxiv.8259317.v1
,2018, Hue Parameter Fluorescence Identification of Edible Oils with a Smartphone, http://dx.doi.org/10.26434/chemrxiv.6854486.v1
,