ORCID as entered in ROS

Select Publications
2025, Photoswitchable merocyanine-amphiphiles with programmable self-assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n-v3
,2025, Photoswitchable merocyanine-amphiphiles with programmable self-assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n-v2
,2025, Solid-state sensitized liquid-chromophore triplet fusion upconversion, http://dx.doi.org/10.26434/chemrxiv-2025-k36zk
,2025, Photoresponsive assemblies of spiropyran-amphiphiles with programmable assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n
,2025, Ruthenium(II) complexes with photoswitchable and photoejectable ligands, http://dx.doi.org/10.26434/chemrxiv-2025-3sffc
,2025, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2-v3
,2024, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2-v2
,2024, Ionic gradients in flow to control the transport of emissive ions, http://dx.doi.org/10.26434/chemrxiv-2024-tvmn2
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v5
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v4
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v3
,2024, A general method for near-infrared photoswitching in biology, demonstrated by the >700 nm photocontrol of GPCR activity in brain slices, http://dx.doi.org/10.26434/chemrxiv-2024-vm4n3
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v2
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj
,2023, Observation of an emissive intermediate in a liquid singlet fission and triplet fusion system at room temperature, http://dx.doi.org/10.26434/chemrxiv-2023-vn492
,2022, Modulating the lifetime of DNA motifs using visible light and small molecules, http://dx.doi.org/10.26434/chemrxiv-2022-q2413-v2
,2022, Modulating the lifetime of DNA motifs using visible light and small molecules, http://dx.doi.org/10.26434/chemrxiv-2022-q2413
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v4
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v3
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v2
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k
,2022, Basic-to-acidic reversible pH switching with a merocyanine photoacid, http://dx.doi.org/10.26434/chemrxiv-2022-wnts7
,2021, Visible light switching of metallosupramolecular assemblies, http://dx.doi.org/10.26434/chemrxiv-2021-rfd1m
,2021, Large, tunable and reversible pH changes by spiropyran photoacids, http://dx.doi.org/10.26434/chemrxiv-2021-gppx1
,2021, Errors in the Use of NMR to Test Molecular Mobility during a Chemical Reaction, http://dx.doi.org/10.26434/chemrxiv.14306771.v1
,2020, An All-Photonic Molecular Amplifier and Binary Flip-flop, http://dx.doi.org/10.26434/chemrxiv.13277855.v2
,2020, Comment on “Boosted Molecular Mobility During Common Chemical Reactions", http://dx.doi.org/10.26434/chemrxiv.13023164.v1
,2020, Controlled Diffusion of Photoswitchable Receptors by Binding Antielectrostatic Phosphate Oligomers, http://dx.doi.org/10.26434/chemrxiv.12298919.v1
,2020, Ultra-Low Molecular Weight Photoswitchable Hydrogelators, http://dx.doi.org/10.26434/chemrxiv.12950858.v4
,2019, Enhanced Diffusion of Molecular Catalysts Is Due to Convection, http://dx.doi.org/10.26434/chemrxiv.8259317.v1
,2018, Hue Parameter Fluorescence Identification of Edible Oils with a Smartphone, http://dx.doi.org/10.26434/chemrxiv.6854486.v1
,2018, Hue Parameter Fluorescence Identification of Edible Oils with a Smartphone, http://dx.doi.org/10.26434/chemrxiv.6854486
,