ORCID as entered in ROS

Select Publications
2024, 'Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes', Journal of Power Sources, 591, http://dx.doi.org/10.1016/j.jpowsour.2023.233835
,2024, 'Electrocatalysts for alkaline water electrolysis at ampere-level current densities: a review', International Journal of Hydrogen Energy, 51, pp. 667 - 684, http://dx.doi.org/10.1016/j.ijhydene.2023.07.026
,2024, 'What determines the stability of Fe-N-C catalysts in HT-PEMFCs?', International Journal of Hydrogen Energy, 50, pp. 921 - 930, http://dx.doi.org/10.1016/j.ijhydene.2023.09.190
,2024, 'Research progress and prospect of anionic exchange membrane electrolyzer and OER electrocatalysts', Scientia Sinica Chimica, 54, pp. 1837 - 1847, http://dx.doi.org/10.1360/SSC-2024-0118
,2024, 'Stacking Fault‐Enriched MoNi4/MoO2 Enables High‐Performance Hydrogen Evolution (Adv. Mater. 33/2024)', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202470264
,2023, 'Li-Mediated Electrochemical Nitrogen Fixation: Key Advances and Future Perspectives', Small, 19, http://dx.doi.org/10.1002/smll.202305616
,2023, 'Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance', Inorganic Chemistry Frontiers, 11, pp. 837 - 844, http://dx.doi.org/10.1039/d3qi02046k
,2023, 'Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202211884
,2023, 'Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-35973-8
,2023, 'Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-36100-3
,2023, 'Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells', Electrochemical Energy Reviews, 6, http://dx.doi.org/10.1007/s41918-023-00180-y
,2023, 'Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions', Green Energy and Environment, 8, pp. 1567 - 1595, http://dx.doi.org/10.1016/j.gee.2022.10.001
,2023, 'Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries', Nano Micro Letters, 15, http://dx.doi.org/10.1007/s40820-023-01071-z
,2023, 'Operando monitoring of gas bubble evolution in water electrolysis by single high-frequency impedance', Ees Catalysis, 1, pp. 998 - 1008, http://dx.doi.org/10.1039/d3ey00182b
,2023, 'Unlocking Ultra-High Performance in Immersed Solar Water Splitting with Optimised Energetics', Advanced Energy Materials, 13, http://dx.doi.org/10.1002/aenm.202301793
,2023, 'Highly Ordered Hierarchical Porous Single-Atom Fe Catalyst with Promoted Mass Transfer for Efficient Electroreduction of CO2', Advanced Energy Materials, 13, http://dx.doi.org/10.1002/aenm.202302007
,2023, 'Operando investigations of proton exchange membrane fuel cells performance during air interruptions in dry and humidified conditions', Journal of Power Sources, 580, http://dx.doi.org/10.1016/j.jpowsour.2023.233418
,2023, 'Decoupling the contributions of industrially relevant conditions to the stability of binary and ternary FeNi-based catalysts for alkaline water oxidation', Journal of Materials Chemistry A, 11, pp. 19418 - 19426, http://dx.doi.org/10.1039/d3ta03905f
,2023, 'Operando deconvolution of the degradation mechanisms of iron-nitrogen-carbon catalysts in proton exchange membrane fuel cells', Energy and Environmental Science, 16, pp. 3792 - 3802, http://dx.doi.org/10.1039/d3ee01166f
,2023, 'Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and Anion Exchange Membrane Water/Seawater Electrolyzers', Small, 19, http://dx.doi.org/10.1002/smll.202208076
,2023, 'From bulk metals to single-atoms: design of efficient catalysts for the electroreduction of CO2', Chemical Communications, 59, pp. 7731 - 7742, http://dx.doi.org/10.1039/d3cc01581e
,2023, 'Molecular Copper Phthalocyanine and FeOOH Modified BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Oxidation', Advanced Materials Technologies, 8, http://dx.doi.org/10.1002/admt.202201835
,2023, 'A safe anode-free lithium metal pouch cell enabled by integrating stable quasi-solid electrolytes with oxygen-free cathodes', Chemical Engineering Journal, 463, http://dx.doi.org/10.1016/j.cej.2023.142386
,2023, 'Atomically Dispersed Cu-Au Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate', ACS Catalysis, 13, pp. 5689 - 5696, http://dx.doi.org/10.1021/acscatal.2c06145
,2023, 'Porous nanosheet composite with multi-type active centers as an efficient and stable oxygen electrocatalyst in alkaline and acid conditions', Science China Materials, 66, pp. 1407 - 1416, http://dx.doi.org/10.1007/s40843-022-2272-2
,2023, 'Towards the Reduction of Pt Loading in High Temperature Proton Exchange Membrane Fuel Cells – Effect of Fe−N−C in Pt-Alloy Cathodes', Chemsuschem, 16, http://dx.doi.org/10.1002/cssc.202202046
,2023, 'Co-insertion of Water with Protons into Organic Electrodes Enables High-Rate and High-Capacity Proton Batteries', Small Structures, 4, http://dx.doi.org/10.1002/sstr.202200257
,2023, 'Super-exchange effect induced by early 3d metal doping on NiFe2O4(0 0 1) surface for oxygen evolution reaction', Journal of Energy Chemistry, 78, pp. 21 - 29, http://dx.doi.org/10.1016/j.jechem.2022.11.025
,2023, 'An outstanding NiFe/NF oxygen evolution reaction boosted by the hydroxyl oxides', Electrochimica Acta, 442, http://dx.doi.org/10.1016/j.electacta.2023.141862
,2023, 'Operando monitoring of the evolution of triple-phase boundaries in proton exchange membrane fuel cells', Journal of Power Sources, 557, http://dx.doi.org/10.1016/j.jpowsour.2022.232539
,2023, 'Deconvolution of electrochemical impedance spectroscopy data using the deep-neural-network-enhanced distribution of relaxation times', Electrochimica Acta, 439, http://dx.doi.org/10.1016/j.electacta.2022.141499
,2023, 'Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie International Edition, 62, http://dx.doi.org/10.1002/anie.202214449
,2023, 'Large‐area Free‐standing Metalloporphyrin‐based Covalent Organic Framework Films by Liquid‐air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202214449
,2023, 'Enhancing Adhesion of Electroless Copper Film on Smooth Polyimide Surfaces by Photocatalytic Oxidation', Journal of the Electrochemical Society, 170, http://dx.doi.org/10.1149/1945-7111/acf6e5
,2022, 'Constructing fast ion-transport channels for reversible zinc metal anodes enabled by self-concentration effect', Chemical Engineering Journal, 450, http://dx.doi.org/10.1016/j.cej.2022.137921
,2022, 'Highly active CoP-Co2N confined in nanocarbon enabling efficient electrocatalytic immobilizing-conversion of polysulfide targeting high-rate lithium-sulfur batteries', Journal of Energy Chemistry, 75, pp. 250 - 259, http://dx.doi.org/10.1016/j.jechem.2022.08.033
,2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202202992
,2022, 'Stable colloid-in-acid electrolytes for long life proton batteries', Nano Energy, 102, http://dx.doi.org/10.1016/j.nanoen.2022.107642
,2022, 'Editorial overview: Electrochemical materials and engineering 2022 Energy materials and concepts that enable a green and clean future', Current Opinion in Electrochemistry, 35, http://dx.doi.org/10.1016/j.coelec.2022.101076
,2022, 'Heterostructured V-Doped Ni2P/Ni12P5 Electrocatalysts for Hydrogen Evolution in Anion Exchange Membrane Water Electrolyzers', Small, 18, http://dx.doi.org/10.1002/smll.202204758
,2022, 'The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO2', Current Opinion in Green and Sustainable Chemistry, 37, http://dx.doi.org/10.1016/j.cogsc.2022.100651
,2022, 'Creating low coordination atoms on MoS2/NiS2 heterostructure toward modulating the adsorption of oxygenated intermediates in lithium-oxygen batteries', Chemical Engineering Journal, 442, http://dx.doi.org/10.1016/j.cej.2022.136311
,2022, 'Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: a review', Nanoscale, 14, pp. 11892 - 11908, http://dx.doi.org/10.1039/d2nr03310k
,2022, 'The nature of synergistic effects in transition metal oxides/in-situ intermediate-hydroxides for enhanced oxygen evolution reaction', Current Opinion in Electrochemistry, 34, http://dx.doi.org/10.1016/j.coelec.2022.100987
,2022, 'Implementation of different Fe–N–C catalysts in high temperature proton exchange membrane fuel cells – Effect of catalyst and catalyst layer on performance', Journal of Power Sources, 537, http://dx.doi.org/10.1016/j.jpowsour.2022.231529
,2022, 'Accelerating the reaction kinetics of lithium-oxygen chemistry by modulating electron acceptance-donation interaction in electrocatalysts', Journal of Materials Chemistry A, 10, pp. 17267 - 17278, http://dx.doi.org/10.1039/d2ta04418h
,2022, 'Oxygen Corrosion Engineering of Nonprecious Ternary Metal Hydroxides toward Oxygen Evolution Reaction', ACS Sustainable Chemistry and Engineering, 10, pp. 8597 - 8604, http://dx.doi.org/10.1021/acssuschemeng.2c02114
,2022, 'Cationic vanadium vacancy-enriched V2−xO5 on V2C MXene as superior bifunctional electrocatalysts for Li-O2 batteries', Science China Materials, 65, pp. 1761 - 1770, http://dx.doi.org/10.1007/s40843-021-1959-1
,2022, 'Single atom-based catalysts for electrochemical CO2 reduction', Chinese Journal of Catalysis, 43, pp. 1547 - 1597, http://dx.doi.org/10.1016/S1872-2067(21)64000-7
,2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction', Angewandte Chemie International Edition, 61, http://dx.doi.org/10.1002/anie.202203335
,