ORCID as entered in ROS

Select Publications
2024, 'Electrocatalytic Reduction of CO2 to Value-Added Chemicals and Fuels', in Conversion of Water and Co2 to Fuels Using Solar Energy Science Technology and Materials, pp. 233 - 284
,2022, '2
2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 1 - 22, http://dx.doi.org/10.1007/978-981-10-6739-6_148-1
,2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 676 - 696, http://dx.doi.org/10.1007/978-981-33-4221-7_148
,2021, '2D-Materials-Free Heterostructures for EC Energy Conversion', in Atomic and Nano Scale Materials for Advanced Energy Conversion Volume 1, pp. 5 - 51, http://dx.doi.org/10.1002/9783527831401.ch2
,2021, 'Electrochemical Water Splitting', in Heterogeneous Catalysts Advanced Design Characterization and Applications Volume 1 and 2, pp. 533 - 555, http://dx.doi.org/10.1002/9783527813599.ch30
,2018, 'Smart Ionic Liquids-based Gas Sensors', in Ionic Liquid Devices, Royal Society of Chemistry, pp. 337 - 364, http://dx.doi.org/10.1039/9781788011839-00337
,2017, 'Education Intelligence Should Be the Breakthrough in Intelligence Science', in Uden L; Lu W; Ting IH (ed.), , SPRINGER-VERLAG BERLIN, pp. 424 - 434, http://dx.doi.org/10.1007/978-3-319-62698-7_35
,2016, 'Recent advances in ionic liquid-based gas sensors', in Koel M (ed.), Analytical Applications of Ionic Liquids, World Scientific Publishing Europe Limited, pp. 261 - 286, http://dx.doi.org/10.1142/9781786340726_0010
,2016, 'Recent advances in ionic liquid-based gas sensors', in Analytical Applications of Ionic Liquids, World Scientific Publishing, pp. 287 - 338, http://dx.doi.org/10.1142/9781786340726_0010
,2014, 'Electrocatalysis in Ionic Liquids', in Hardacre C; Parvulescu V (ed.), Catalysis in Ionic Liquirds, Royal Society of Chemistry, pp. 433 - 473, http://dx.doi.org/10.1039/9781849737210-00433
,2025, 'Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater', Nature Communications, 16, http://dx.doi.org/10.1038/s41467-025-55856-4
,2025, 'Rare earth-rich sublayer tuned Pd-skin for methanol and CO tolerance oxygen reduction and hydrogen oxidation reaction', Advanced Powder Materials, 4, http://dx.doi.org/10.1016/j.apmate.2025.100305
,2025, 'Ultra-stabilized Cu2 + sites in conductive MOF/t-Cu2O interface for benchmark CO2 reduction', Nano Energy, 141, http://dx.doi.org/10.1016/j.nanoen.2025.111077
,2025, 'Low-Platinum and Platinum-Free Catalysts for Next-Generation Hydrogen Fuel Cells', ACS Electrochemistry, http://dx.doi.org/10.1021/acselectrochem.5c00150
,2025, 'Harmonizing Ruthenium Atom-Cluster Moieties for Stable Proton Exchange Membrane Water Electrolysis', ACS Catalysis, 15, pp. 11705 - 11715, http://dx.doi.org/10.1021/acscatal.5c02132
,2025, 'Elucidating proton-intercalation chemistries', National Science Review, 12, http://dx.doi.org/10.1093/nsr/nwaf099
,2025, 'Gaussian Processes for Fast and Accurate Measurements of the Polarization Resistance of Hydrogen Fuel Cells from Impedance Spectroscopy', Journal of the Electrochemical Society, 172, http://dx.doi.org/10.1149/1945-7111/ade82c
,2025, 'Harnessing dynamic reconstruction for intermittent seawater electrolysis', Joule, 9, http://dx.doi.org/10.1016/j.joule.2025.101969
,2025, 'Ampere-level electroreduction of CO2 and CO', Chemical Society Reviews, 54, pp. 6973 - 7016, http://dx.doi.org/10.1039/d4cs00863d
,2025, 'Breaking the Activity and Stability Trade-Off of Platinum-Free Catalysts for the Oxygen Reduction Reaction in Hydrogen Fuel Cells', ACS Nano, 19, pp. 19524 - 19551, http://dx.doi.org/10.1021/acsnano.5c03610
,2025, 'Efficient hydrogen evolution at Ni/CeOx interfaces in anion-exchange membrane water electrolysers', Energy and Environmental Science, 18, pp. 6248 - 6259, http://dx.doi.org/10.1039/d4ee06113f
,2025, 'Insertion of rare earth ions into the ruthenium doped nickel iron layered double hydroxide for oxygen evolution reaction with low overpotential', International Journal of Hydrogen Energy, 109, pp. 1126 - 1132, http://dx.doi.org/10.1016/j.ijhydene.2025.02.023
,2025, 'Fluorine Doping-Assisted Reconstruction of Isolated Cu Sites for CO2 Electroreduction Toward Multicarbon Products', Advanced Materials, 37, http://dx.doi.org/10.1002/adma.202417443
,2025, 'Ru-based catalysts for proton exchange membrane water electrolysers: The need to look beyond just another catalyst', International Journal of Hydrogen Energy, 102, pp. 1461 - 1479, http://dx.doi.org/10.1016/j.ijhydene.2024.12.485
,2025, 'Metallic ruthenium and ruthenium oxide heterojunctions boost acidic oxygen evolution reaction activity and durability', Electrochimica Acta, 512, http://dx.doi.org/10.1016/j.electacta.2024.145442
,2025, 'Anionic Oxidation Activity/Stability Regulated by Transition Metals in Multimetallic (Oxy)hydroxides for Alkaline Water Oxidation', ACS Catalysis, 15, pp. 44 - 53, http://dx.doi.org/10.1021/acscatal.4c03718
,2025, 'Disclosing the intrinsic electrocatalytic activity of transition-metal sulfides for enhanced water oxidation', Science China Chemistry, http://dx.doi.org/10.1007/s11426-024-2622-4
,2025, 'Dual Metal Fe–Mn–N–C Sites with Improved Stability for the Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell', Small Methods, http://dx.doi.org/10.1002/smtd.202500116
,2025, 'Influence of Ink Composition and Drying Technique on the Performance and Stability of Fe–N–C-Based High-Temperature Proton Exchange Membrane Fuel Cells', Chemsuschem, http://dx.doi.org/10.1002/cssc.202500905
,2025, 'Low-Surface-Energy Copper Promotes Atomic Diffusion and Ordering in PtFeCu Intermetallic Compounds for Oxygen Reduction Catalysis', Advanced Functional Materials, http://dx.doi.org/10.1002/adfm.202501610
,2024, 'A High-capacity Benzoquinone Derivative Anode for All-organic Long-cycle Aqueous Proton Batteries', Angewandte Chemie International Edition, 63, http://dx.doi.org/10.1002/anie.202412455
,2024, 'A High‐capacity Benzoquinone Derivative Anode for All‐organic Long‐cycle Aqueous Proton Batteries', Angewandte Chemie, 136, http://dx.doi.org/10.1002/ange.202412455
,2024, 'Cation Adsorption Engineering Enables Dual Stabilizations for Fast-Charging Zn─I2 Batteries', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202402306
,2024, 'Tunable Ag-Ox coordination for industrial-level carbon-negative CO2 electrolysis', Nano Energy, 131, http://dx.doi.org/10.1016/j.nanoen.2024.110265
,2024, 'Molecule Doping of Atomically Dispersed Cu–Au Alloy for Enhancing Electroreduction of CO to C2+ Products', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202406281
,2024, '(Invited) How to Make Fuel Cells Cheaper and More Efficient', ECS Meeting Abstracts, MA2024-02, pp. 3063 - 3063, http://dx.doi.org/10.1149/ma2024-02443063mtgabs
,2024, 'Low-Electronegativity Mn-Contraction of Ptmn Nanodendrites Boosts Oxygen Reduction Durability', ECS Meeting Abstracts, MA2024-02, pp. 2692 - 2692, http://dx.doi.org/10.1149/ma2024-02412692mtgabs
,2024, 'Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications', Advanced Materials, 36, pp. e2404659, http://dx.doi.org/10.1002/adma.202404659
,2024, 'Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202404658
,2024, 'Carbothermal Reduction-Assisted Synthesis of a Carbon-Supported Highly Dispersed PtSn Nanoalloy for the Oxygen Reduction Reaction', Inorganic Chemistry, 63, pp. 19322 - 19331, http://dx.doi.org/10.1021/acs.inorgchem.4c03099
,2024, 'Challenges and Opportunities for Proton Batteries: From Electrodes, Electrolytes to Full-Cell Applications', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202405401
,2024, 'Stacking Fault-Enriched MoNi4/MoO2 Enables High-Performance Hydrogen Evolution', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202402156
,2024, 'Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202301373
,2024, 'Work Function-Guided Electrocatalyst Design', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202401568
,2024, 'Advancing electrochemical impedance analysis through innovations in the distribution of relaxation times method', Joule, 8, pp. 1958 - 1981, http://dx.doi.org/10.1016/j.joule.2024.05.008
,2024, 'High-performance zinc metal anode enabled by large-scale integration of superior ion transport layer', Chemical Engineering Journal, 492, http://dx.doi.org/10.1016/j.cej.2024.152114
,2024, 'Suppressed Manganese Oxides Shuttling in Acidic Electrolytes Extends Shelf-Life of Electrolytic Proton Batteries', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202315706
,2024, 'An Emerging Chemistry Revives Proton Batteries', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202300699
,2024, 'In-situ construction of epitaxial phase for boosting zinc nucleation on three-dimensional interface', Progress in Natural Science Materials International, 34, pp. 578 - 584, http://dx.doi.org/10.1016/j.pnsc.2024.05.002
,