ORCID as entered in ROS

Select Publications
2021, Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits, http://arxiv.org/abs/2107.13664v2
,2021, Precision tomography of a three-qubit donor quantum processor in silicon, http://dx.doi.org/10.1038/s41586-021-04292-7
,2021, Improving Semiconductor Device Modeling for Electronic Design Automation by Machine Learning Techniques, http://dx.doi.org/10.1109/TED.2023.3307051
,2021, Fast coherent control of an NV- spin ensemble using a KTaO3 dielectric resonator at cryogenic temperatures, http://dx.doi.org/10.1103/PhysRevApplied.16.044051
,2021, A high-sensitivity charge sensor for silicon qubits above one kelvin, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2021, Roadmap on quantum nanotechnologies, http://dx.doi.org/10.48550/arxiv.2101.07882
,2020, Single-electron spin resonance in a nanoelectronic device using a global field, http://dx.doi.org/10.1126/sciadv.abg9158
,2020, An ultra-stable 1.5 tesla permanent magnet assembly for qubit experiments at cryogenic temperatures, http://dx.doi.org/10.1063/5.0055318
,2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.1038/s41467-021-23437-w
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.1038/s41467-021-24371-7
,2020, Spin thermometry and spin relaxation of optically detected Cr3+ ions in ruby Al2O3, http://dx.doi.org/10.1103/PhysRevB.102.104114
,2020, Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device, http://dx.doi.org/10.1038/s41467-020-20424-5
,2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, Coherent control of NV- centers in diamond in a quantum teaching lab, http://dx.doi.org/10.48550/arxiv.2004.02643
,2019, Controllable freezing of the nuclear spin bath in a single-atom spin qubit, http://dx.doi.org/10.1126/sciadv.aba3442
,2019, Coherent electrical control of a single high-spin nucleus in silicon, http://dx.doi.org/10.1038/s41586-020-2057-7
,2019, A silicon quantum-dot-coupled nuclear spin qubit, http://dx.doi.org/10.48550/arxiv.1904.08260
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.48550/arxiv.1902.09126
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.1038/s41467-019-14053-w
,2018, Single-spin qubits in isotopically enriched silicon at low magnetic field, http://dx.doi.org/10.48550/arxiv.1812.08347
,2018, Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices, http://dx.doi.org/10.48550/arxiv.1812.06644
,2018, Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction, http://dx.doi.org/10.48550/arxiv.1807.10415
,2018, Silicon qubit fidelities approaching incoherent noise limits via pulse engineering, http://dx.doi.org/10.48550/arxiv.1807.09500
,2018, Fidelity benchmarks for two-qubit gates in silicon, http://dx.doi.org/10.48550/arxiv.1805.05027
,2018, Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy, http://dx.doi.org/10.48550/arxiv.1803.01609
,2017, Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout, http://dx.doi.org/10.48550/arxiv.1708.03445
,2017, Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.1706.08095
,2017, Coherent control via weak measurements in $^{31}$P single-atom electron and nuclear spin qubits, http://dx.doi.org/10.48550/arxiv.1702.07991
,2016, A single-atom quantum memory in silicon, http://dx.doi.org/10.48550/arxiv.1608.07109
,2016, Optimization of a solid-state electron spin qubit using Gate Set Tomography, http://dx.doi.org/10.48550/arxiv.1606.02856
,2016, Breaking the rotating wave approximation for a strongly-driven, dressed, single electron spin, http://dx.doi.org/10.48550/arxiv.1606.02380
,2016, A Dressed Spin Qubit in Silicon, http://dx.doi.org/10.48550/arxiv.1603.04800
,2016, Vibration-induced electrical noise in a cryogen-free dilution refrigerator: characterization, mitigation, and impact on qubit coherence, http://dx.doi.org/10.48550/arxiv.1603.03146
,2016, Transport of Spin Qubits with Donor Chains under Realistic Experimental Conditions, http://dx.doi.org/10.48550/arxiv.1602.07058
,2015, Bell's inequality violation with spins in silicon, http://dx.doi.org/10.48550/arxiv.1504.03112
,2015, Electrically controlling single spin qubits in a continuous microwave field, http://dx.doi.org/10.48550/arxiv.1503.05985
,2014, A Two Qubit Logic Gate in Silicon, http://dx.doi.org/10.48550/arxiv.1411.5760
,2014, Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking, http://dx.doi.org/10.48550/arxiv.1410.2338
,2014, Storing quantum information for 30 seconds in a nanoelectronic device, http://dx.doi.org/10.48550/arxiv.1402.7140
,2013, High-fidelity adiabatic inversion of a $^{31}\mathrm{P}$ electron spin qubit in natural silicon, http://dx.doi.org/10.48550/arxiv.1312.4647
,2013, Robust two-qubit gates for donors in silicon controlled by hyperfine interactions, http://dx.doi.org/10.48550/arxiv.1312.2197
,2012, Fluctuation induced luminescence sidebands in the emission spectra of resonantly driven quantum dots, http://dx.doi.org/10.48550/arxiv.1207.6952
,2012, Broadband Purcell enhanced emission dynamics of quantum dots in linear photonic crystal waveguides, http://dx.doi.org/10.48550/arxiv.1205.1286
,2012, A Waveguide-Coupled On-Chip Single Photon Source, http://dx.doi.org/10.48550/arxiv.1201.5153
,2011, Climbing the Jaynes-Cummings ladder by photon counting, http://dx.doi.org/10.48550/arxiv.1104.3564
,2011, A Correlation between the Emission Intensity of Self-Assembled Germanium Islands and the Quality Factor of Silicon Photonic Crystal Nanocavities, http://dx.doi.org/10.48550/arxiv.1103.3748
,2011, Cavity versus dot emission in strongly coupled quantum dots-cavity systems, http://dx.doi.org/10.48550/arxiv.1102.3874
,2010, Recent progress towards acoustically mediated carrier injection into individual nanostructures for single photon generation, http://dx.doi.org/10.48550/arxiv.1011.5048
,