ORCID as entered in ROS

Select Publications
2008, 'Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap', Physical Review B Condensed Matter and Materials Physics, 77, http://dx.doi.org/10.1103/PhysRevB.77.073312
,2008, 'Observation of non resonant coupling of single quantum dots to photonic crystal nanocavity modes', Conference on Quantum Electronics and Laser Science QELS Technical Digest Series, http://dx.doi.org/10.1109/QELS.2008.4553249
,2007, 'Efficient spatial redistribution of quantum dot spontaneous emission from two-dimensional photonic crystals', Applied Physics Letters, 91, http://dx.doi.org/10.1063/1.2757134
,2024, 'Integrated Room Temperature Single Photon Source in Hexagonal Boron Nitride for Quantum Key Distribution', in 2024 Conference on Lasers and Electro Optics CLEO 2024, http://dx.doi.org/10.1364/cleo_at.2024.aw4d.1
,2024, 'Demonstration of 99.9% single qubit control fidelity of a silicon quantum dot spin qubit made in a 300 mm foundry process', in 2024 IEEE Silicon Nanoelectronics Workshop Snw 2024, pp. 11 - 12, http://dx.doi.org/10.1109/SNW63608.2024.10639218
,2024, 'Integrated Room Temperature Single Photon Source in Hexagonal Boron Nitride for Quantum Key Distribution', in 2024 Conference on Lasers and Electro-Optics, CLEO 2024
,2023, 'Hyperfine spectroscopy and fast all-optical arbitrary nuclear state preparation of a single 73Ge vacancy in diamond', in Figer DF; Reimer M (ed.), Photonics for Quantum 2023, SPIE, pp. 25 - 25, presented at Photonics for Quantum 2023, 05 June 2023 - 09 June 2023, http://dx.doi.org/10.1117/12.2675865
,2018, 'Controlling spin-orbit interaction in scalable silicon-MOS quantum dot architectures', in Extended Abstracts of the 2018 International Conference on Solid State Devices and Materials, The Japan Society of Applied Physics, presented at 2018 International Conference on Solid State Devices and Materials, 09 September 2018 - 13 September 2018, http://dx.doi.org/10.7567/ssdm.2018.a-7-01
,2018, 'Scalable quantum computing with ion-implanted dopant atoms in Silicon', in Technical Digest International Electron Devices Meeting Iedm, pp. 6.2.1 - 6.2.4, http://dx.doi.org/10.1109/IEDM.2018.8614498
,2017, 'Spin Qubits in Silicon – Advantages of Dressed States', in Brazilian Workshop on Semiconductor Physics, Galoa, presented at Brazilian Workshop on Semiconductor Physics, 14 August 2017 - 18 August 2017, http://dx.doi.org/10.17648/bwsp-2017-69955
,2014, 'Single-atom spin qubits in silicon', in 2014 Conference on Optoelectronic and Microelectronic Materials and Devices COMMAD 2014, pp. 198 - 199, http://dx.doi.org/10.1109/COMMAD.2014.7038688
,2014, 'Single-atom spin qubits in silicon', in 2014 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2014, pp. 198 - 199, http://dx.doi.org/10.1109/COMMAD.2014.7038688
,2009, 'ELECTRICALLY TUNABLE SINGLE DOT NANOCAVITIES', in Vina L; Tejedor C; Calleja JM (eds.), 11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), IOP PUBLISHING LTD, SPAIN, Univ Autonoma Madrid, Cantoblanco, presented at 11th International Conference on Optics of Excitons in Confined Systems, SPAIN, Univ Autonoma Madrid, Cantoblanco, 07 September 2009 - 11 September 2009, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289715800073&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2018, Quantum logic, Patent No. Australian patent no. 2013302299; United States patent no.10878331; Switzerland patent no. 2883194; Germany patent no. 602013071401; France patent no. 2883194; United Kingdom patent no. 2883194; Ireland patent no. 2883194; Netherlands patent no. 2883194, https://worldwide.espacenet.com/publicationDetails/biblio?CC=AU&NR=2013302299B2&KC=B2&FT=D
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org10.21203/rs.3.rs-3057916/v1, https://doi.org/10.21203/rs.3.rs-3057916/v1
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org, http://dx.doi.org/10.1038/s41534-022-00645-w
,2023, Jellybean Quantum Dots in Silicon for Qubit Coupling and On‐Chip Quantum Chemistry (Adv. Mater. 19/2023), at: https://doi.org/10.1002/adma.202370133
,2025, Scalable entanglement of nuclear spins mediated by electron exchange, http://arxiv.org/abs/2503.06872v1
,2025, Enhancement of Electric Drive in Silicon Quantum Dots with Electric Quadrupole Spin Resonance, http://arxiv.org/abs/2502.01040v2
,2024, A 2x2 quantum dot array in silicon with fully tuneable pairwise interdot coupling, http://arxiv.org/abs/2411.13882v2
,2024, A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations, http://arxiv.org/abs/2410.15590v2
,2024, Violating Bell's inequality in gate-defined quantum dots, http://arxiv.org/abs/2407.15778v2
,2024, Spin Qubits with Scalable milli-kelvin CMOS Control, http://dx.doi.org/10.48550/arxiv.2407.15151
,2024, A Room-Temperature Solid-State Maser Amplifier, http://dx.doi.org/10.1103/PhysRevX.14.041066
,2024, Coherent all-optical control of a solid-state spin via a double $\Lambda$-system, http://dx.doi.org/10.48550/arxiv.2402.00244
,2023, Entangling gates on degenerate spin qubits dressed by a global field, http://dx.doi.org/10.1038/s41467-024-52010-4
,2023, Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits, http://dx.doi.org/10.48550/arxiv.2309.15463
,2023, All-electron $\mathrm{\textit{ab-initio}}$ hyperfine coupling of Si-, Ge- and Sn-vacancy defects in diamond, http://dx.doi.org/10.48550/arxiv.2309.13913
,2023, Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system, http://dx.doi.org/10.1063/5.0179958
,2023, Wavelet correlation noise analysis for qubit operation variable time series, http://dx.doi.org/10.1038/s41598-024-79553-2
,2023, Hyperfine spectroscopy and fast, all-optical arbitrary state initialization and readout of a single, ten-level ${}^{73}$Ge vacancy nuclear spin qudit in diamond, http://dx.doi.org/10.1103/PhysRevLett.132.060603
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, High-fidelity operation and algorithmic initialisation of spin qubits above one kelvin, http://dx.doi.org/10.1038/s41586-024-07160-2
,2023, Characterizing non-Markovian Quantum Process by Fast Bayesian Tomography, http://arxiv.org/abs/2307.12452v2
,2023, Improved Single-Shot Qubit Readout Using Twin RF-SET Charge Correlations, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org/10.1038/s41467-024-48557-x
,2023, Assessment of error variation in high-fidelity two-qubit gates in silicon, http://dx.doi.org/10.1038/s41567-024-02614-w
,2023, Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron Nitride, http://arxiv.org/abs/2302.06212v2
,2022, Coherent spin dynamics of hyperfine-coupled vanadium impurities in silicon carbide, http://dx.doi.org/10.48550/arxiv.2210.09942
,2022, High Fidelity Control of a Nitrogen-Vacancy Spin Qubit at Room Temperature using the SMART Protocol, http://dx.doi.org/10.1103/PhysRevA.108.022606
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, http://dx.doi.org/10.1002/adma.202208557
,2022, Control of dephasing in spin qubits during coherent transport in silicon, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2022, Indirect control of the 29SiV- nuclear spin in diamond, http://dx.doi.org/10.48550/arxiv.2203.10283
,2022, Quantum-Coherent Nanoscience, http://dx.doi.org/10.1038/s41565-021-00994-1
,2022, Integrated Room Temperature Single Photon Source for Quantum Key Distribution, http://dx.doi.org/10.48550/arxiv.2201.11882
,2022, On-demand electrical control of spin qubits, http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Observing hyperfine interactions of NV centers in diamond in an advanced quantum teaching lab, http://dx.doi.org/10.1119/5.0075519
,2021, Implementation of the SMART protocol for global qubit control in silicon, http://dx.doi.org/10.48550/arxiv.2108.00836
,2021, Quantum Computation Protocol for Dressed Spins in a Global Field, http://dx.doi.org/10.1103/PhysRevB.104.235411
,