ORCID as entered in ROS

Select Publications
2021, 'Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage', Cell Reports Physical Science, 2, http://dx.doi.org/10.1016/j.xcrp.2021.100328
,2021, 'Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2', Carbon, 172, pp. 272 - 282, http://dx.doi.org/10.1016/j.carbon.2020.10.025
,2021, 'High-performance metal-iodine batteries enabled by a bifunctional dendrite-free Li-Na alloy anode', Journal of Materials Chemistry A, 9, pp. 538 - 545, http://dx.doi.org/10.1039/d0ta08072a
,2021, 'Non-N-Doped Carbons as Metal-Free Electrocatalysts', Advanced Sustainable Systems, 5, http://dx.doi.org/10.1002/adsu.202000134
,2021, 'Topological Defect‐Rich Carbon as a Metal‐Free Cathode Catalyst for High‐Performance Li‐CO2 Batteries (Adv. Energy Mater. 30/2021)', Advanced Energy Materials, 11, http://dx.doi.org/10.1002/aenm.202170120
,2020, 'Porous Graphene Oxide Films Prepared via the Breath-Figure Method: A Simple Strategy for Switching Access of Redox Species to an Electrode Surface', ACS Applied Materials and Interfaces, 12, pp. 55181 - 55188, http://dx.doi.org/10.1021/acsami.0c16811
,2020, 'Metal-free photo- And electro-catalysts for hydrogen evolution reaction', Journal of Materials Chemistry A, 8, pp. 23674 - 23698, http://dx.doi.org/10.1039/d0ta08704a
,2020, 'Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites', Energy Storage Materials, 33, pp. 309 - 328, http://dx.doi.org/10.1016/j.ensm.2020.07.024
,2020, 'Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities', Energy and Environmental Science, 13, pp. 4536 - 4563, http://dx.doi.org/10.1039/d0ee02800b
,2020, 'Recent advances in flexible/stretchable batteries and integrated devices', Energy Storage Materials, 33, pp. 116 - 138, http://dx.doi.org/10.1016/j.ensm.2020.07.003
,2020, 'Transforming active sites in nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO', Nano Energy, 78, http://dx.doi.org/10.1016/j.nanoen.2020.105213
,2020, 'Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity', ACS Energy Letters, 5, pp. 3560 - 3568, http://dx.doi.org/10.1021/acsenergylett.0c01858
,2020, 'Author Correction: Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage (Nature Nanotechnology, (2014), 9, 7, (555-562), 10.1038/nnano.2014.93)', Nature Nanotechnology, 15, pp. 811, http://dx.doi.org/10.1038/s41565-020-0718-1
,2020, 'TpyCo2+-Based Coordination Polymers by Water-Induced Gelling Trigged Efficient Oxygen Evolution Reaction', Advanced Functional Materials, 30, http://dx.doi.org/10.1002/adfm.202000593
,2020, 'Hole-punching for enhancing electrocatalytic activities of 2D graphene electrodes: Less is more', Journal of Chemical Physics, 153, http://dx.doi.org/10.1063/5.0012709
,2020, 'Targeted Defect Synthesis for Improved Electrocatalytic Performance', Chem, 6, pp. 1849 - 1851, http://dx.doi.org/10.1016/j.chempr.2020.07.018
,2020, 'A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes', Nanoscale, 12, pp. 14615 - 14625, http://dx.doi.org/10.1039/d0nr03378b
,2020, 'Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO2 Electroreduction and High-Performance Zn–CO2 Batteries', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.202002430
,2020, 'Holey graphene-based nanocomposites for efficient electrochemical energy storage', Nano Energy, 73, http://dx.doi.org/10.1016/j.nanoen.2020.104762
,2020, 'Nitrogen-Doped Graphene Foam as a Metal-Free Catalyst for Reduction Reactions under a High Gravity Field', Engineering, 6, pp. 680 - 687, http://dx.doi.org/10.1016/j.eng.2019.12.018
,2020, 'Nitrogen-rich holey graphene for efficient oxygen reduction reaction', Carbon, 162, pp. 66 - 73, http://dx.doi.org/10.1016/j.carbon.2020.01.110
,2020, 'Origins of Boosted Charge Storage on Heteroatom-Doped Carbons', Angewandte Chemie International Edition, 59, pp. 7928 - 7933, http://dx.doi.org/10.1002/anie.202000319
,2020, 'Origins of Boosted Charge Storage on Heteroatom‐Doped Carbons', Angewandte Chemie, 132, pp. 8002 - 8007, http://dx.doi.org/10.1002/ange.202000319
,2020, 'An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts', Nano Energy, 71, http://dx.doi.org/10.1016/j.nanoen.2020.104595
,2020, 'Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis', Nano Energy, 71, http://dx.doi.org/10.1016/j.nanoen.2020.104597
,2020, 'High-Performance, Long-Life, Rechargeable Li–CO2 Batteries based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.201907436
,2020, 'Carbon-Defect-Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution', Journal of the American Chemical Society, 142, pp. 5594 - 5601, http://dx.doi.org/10.1021/jacs.9b11524
,2020, 'High-Performance Li-CO2 Batteries from Free-Standing, Binder-Free, Bifunctional Three-Dimensional Carbon Catalysts', ACS Energy Letters, 5, pp. 916 - 921, http://dx.doi.org/10.1021/acsenergylett.0c00181
,2020, 'High-Performance K–CO2 Batteries Based on Metal-Free Carbon Electrocatalysts', Angewandte Chemie International Edition, 59, pp. 3470 - 3474, http://dx.doi.org/10.1002/anie.201913687
,2020, 'High‐Performance K–CO2 Batteries Based on Metal‐Free Carbon Electrocatalysts', Angewandte Chemie, 132, pp. 3498 - 3502, http://dx.doi.org/10.1002/ange.201913687
,2020, 'Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting', Energy and Environmental Science, 13, pp. 545 - 553, http://dx.doi.org/10.1039/c9ee03273h
,2020, 'Recent Advances in Fiber-Shaped Supercapacitors and Lithium-Ion Batteries', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.201902779
,2020, 'Fiber‐Shaped Energy‐Storage Devices: Recent Advances in Fiber‐Shaped Supercapacitors and Lithium‐Ion Batteries (Adv. Mater. 5/2020)', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.202070037
,2019, 'Controlled Surface Elemental Distribution Enhances Catalytic Activity and Stability', Matter, 1, pp. 1447 - 1449, http://dx.doi.org/10.1016/j.matt.2019.11.009
,2019, 'Donor–Acceptor Nanocarbon Ensembles to Boost Metal-Free All-pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation', Angewandte Chemie International Edition, 58, pp. 16217 - 16222, http://dx.doi.org/10.1002/anie.201907826
,2019, 'Donor–Acceptor Nanocarbon Ensembles to Boost Metal‐Free All‐pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation', Angewandte Chemie, 131, pp. 16363 - 16368, http://dx.doi.org/10.1002/ange.201907826
,2019, 'Innentitelbild: Donor–Acceptor Nanocarbon Ensembles to Boost Metal‐Free All‐pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation (Angew. Chem. 45/2019)', Angewandte Chemie, 131, pp. 16086 - 16086, http://dx.doi.org/10.1002/ange.201912599
,2019, 'Inside Cover: Donor–Acceptor Nanocarbon Ensembles to Boost Metal‐Free All‐pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation (Angew. Chem. Int. Ed. 45/2019)', Angewandte Chemie International Edition, 58, pp. 15940 - 15940, http://dx.doi.org/10.1002/anie.201912599
,2019, 'Two-Dimensional Conjugated Aromatic Networks as High-Site-Density and Single-Atom Electrocatalysts for the Oxygen Reduction Reaction', Angewandte Chemie International Edition, 58, pp. 14724 - 14730, http://dx.doi.org/10.1002/anie.201908023
,2019, 'Two‐Dimensional Conjugated Aromatic Networks as High‐Site‐Density and Single‐Atom Electrocatalysts for the Oxygen Reduction Reaction', Angewandte Chemie, 131, pp. 14866 - 14872, http://dx.doi.org/10.1002/ange.201908023
,2019, 'Highly sensitive and selective electrochemical immunosensors by substrate-enhanced electroless deposition of metal nanoparticles onto three-dimensional graphene@Ni foams', Science Bulletin, 64, pp. 1272 - 1279, http://dx.doi.org/10.1016/j.scib.2019.07.015
,2019, 'A graphene rheostat for highly durable and stretchable strain sensor', Infomat, 1, pp. 396 - 406, http://dx.doi.org/10.1002/inf2.12030
,2019, 'Catalytic origin and universal descriptors of heteroatom-doped photocatalysts for solar fuel production', Nano Energy, 63, http://dx.doi.org/10.1016/j.nanoen.2019.06.015
,2019, 'Graphdiyne with tunable activity towards hydrogen evolution reaction', Nano Energy, 63, http://dx.doi.org/10.1016/j.nanoen.2019.103874
,2019, 'Ten years of carbon-based metal-free electrocatalysts', Carbon Energy, 1, pp. 19 - 31, http://dx.doi.org/10.1002/cey2.5
,2019, 'Advancing Materials Electrochemistry for Chemical Transformation', Advanced Materials Deerfield Beach Fla, 31, pp. e1903622, http://dx.doi.org/10.1002/adma.201903622
,2019, 'Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping', Nature Catalysis, 2, pp. 688 - 695, http://dx.doi.org/10.1038/s41929-019-0297-4
,2019, 'Recent Advances in Carbon-Based Metal-Free Electrocatalysts', Advanced Materials, 31, http://dx.doi.org/10.1002/adma.201806403
,2019, 'C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution', Journal of the American Chemical Society, 141, pp. 11658 - 11666, http://dx.doi.org/10.1021/jacs.9b05006
,2019, 'Tactile UV- and Solar-Light Multi-Sensing Rechargeable Batteries with Smart Self-Conditioned Charge and Discharge', Angewandte Chemie International Ed in English, 58, pp. 9248 - 9253, http://dx.doi.org/10.1002/anie.201903805
,