ORCID as entered in ROS

Select Publications
, 2025, '1 Preliminaries on the theory of von Neumann algebras and general theory of linear operators in a Hilbert space', in Algebras of Unbounded Operators, De Gruyter, pp. 7 - 86, http://dx.doi.org/10.1515/9783111599687-002
, 2025, '2 Classes of unbounded operators', in Algebras of Unbounded Operators, De Gruyter, pp. 87 - 123, http://dx.doi.org/10.1515/9783111599687-003
, 2025, '3 Properties of locally measurable operators', in Algebras of Unbounded Operators, De Gruyter, pp. 124 - 180, http://dx.doi.org/10.1515/9783111599687-004
, 2025, '4 Topologies on algebras of unbounded operators', in Algebras of Unbounded Operators, De Gruyter, pp. 181 - 230, http://dx.doi.org/10.1515/9783111599687-005
, 2025, '5 Properties of derivations on algebras of locally measurable operators', in Algebras of Unbounded Operators, De Gruyter, pp. 231 - 275, http://dx.doi.org/10.1515/9783111599687-006
, 2025, '6 Derivations on the algebras of measurable operators affiliated with a type Ifin von Neumann algebra', in Algebras of Unbounded Operators, De Gruyter, pp. 276 - 338, http://dx.doi.org/10.1515/9783111599687-007
, 2025, '7 Complete description of derivations on algebras of locally measurable operators', in Algebras of Unbounded Operators, De Gruyter, pp. 339 - 392, http://dx.doi.org/10.1515/9783111599687-008
, 2025, 'Bibliography', in Algebras of Unbounded Operators, De Gruyter, pp. 393 - 400, http://dx.doi.org/10.1515/9783111599687-009
, 2025, 'General notation', in Algebras of Unbounded Operators, De Gruyter, pp. XI - XII, http://dx.doi.org/10.1515/9783111599687-202
, 2025, 'Introduction', in Algebras of Unbounded Operators, De Gruyter, pp. 1 - 6, http://dx.doi.org/10.1515/9783111599687-001
, 2025, 'Notation index', in Algebras of Unbounded Operators, De Gruyter, pp. 405 - 408, http://dx.doi.org/10.1515/9783111599687-011
, 2025, 'Preface', in Algebras of Unbounded Operators, De Gruyter, pp. V - VI, http://dx.doi.org/10.1515/9783111599687-201
2023, 'Noncommutative Integration and Operator Theory', in , pp. 1 - 572, http://dx.doi.org/10.1007/978-3-031-49654-7
,2023, 'THE CONNES CHARACTER FORMULA FOR LOCALLY COMPACT SPECTRAL TRIPLES', in Asterisque, pp. 1 - 150, http://dx.doi.org/10.24033/AST.1204
,2023, 'Examples', in Progress in Mathematics, Springer Nature Switzerland, pp. 391 - 454, http://dx.doi.org/10.1007/978-3-031-49654-7_6
,2023, 'Interpolation', in Progress in Mathematics, Springer Nature Switzerland, pp. 455 - 544, http://dx.doi.org/10.1007/978-3-031-49654-7_7
,2023, 'Singular Value Functions', in Progress in Mathematics, Springer Nature Switzerland, pp. 121 - 237, http://dx.doi.org/10.1007/978-3-031-49654-7_3
,2023, 'Strongly Symmetric Spaces of $$\tau $$-Measurable Operators', in Progress in Mathematics, Springer Nature Switzerland, pp. 297 - 389, http://dx.doi.org/10.1007/978-3-031-49654-7_5
,2023, 'Symmetric Spaces of $$\tau $$-Measurable Operators', in Progress in Mathematics, Springer Nature Switzerland, pp. 239 - 295, http://dx.doi.org/10.1007/978-3-031-49654-7_4
,2020, 'Advances in Dixmier traces and applications', in Advances in Noncommutative Geometry On the Occasion of Alain Connes' 70th Birthday, Springer Nature, pp. 491 - 593
,2020, 'Quantised Calculus for Perturbed Massive Dirac Operator on Noncommutative Euclidean Space', in Spectral Theory and Mathematical Physics, Springer International Publishing, pp. 179 - 198, http://dx.doi.org/10.1007/978-3-030-55556-6_10
,2019, 'A residue formula for locally compact noncommutative manifolds', in Positivity and Noncommutative Analysis, pp. 471 - 510, http://dx.doi.org/10.1007/978-3-030-10850-2_24
,2019, 'Preface', in , pp. vii
,2015, 'Some operator bounds employing complex interpolation revisited', in Arendt W; Chill R; Tomilov Y (ed.), Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Springer International Publishing, pp. 213 - 239, http://dx.doi.org/10.1007/978-3-319-18494-4_14
,2013, 'On a conjecture of A. Bikchentaev', in , American Mathematical Society, pp. 327 - 339, http://dx.doi.org/10.1090/pspum/087/01428
,2006, 'Analytic formulae for Spectral Flow in von Neumann algebras', in Booss Bavnbek B; Klimek S; Lesch M; Zhang W (ed.), Analysis, Geometry and topology of elliptic operators, World Scientific, Singapore
,