Select Publications
Preprints
, 2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.1038/s41467-021-23437-w
, 2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.1038/s41467-021-24371-7
, 2020, Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device, http://dx.doi.org/10.1038/s41467-020-20424-5
, 2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
, 2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.1021/acs.nanolett.0c04771
, 2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.1103/PRXQuantum.2.010303
, 2019, Superconducting charge sensor coupled to an electron layer in silicon, http://arxiv.org/abs/1909.11976v1
, 2019, Waiting time distributions in a two-level fluctuator coupled to a superconducting charge detector, http://dx.doi.org/10.1103/PhysRevResearch.1.033163
, 2019, Controllable freezing of the nuclear spin bath in a single-atom spin qubit, http://dx.doi.org/10.1126/sciadv.aba3442
, 2019, Coherent electrical control of a single high-spin nucleus in silicon, http://dx.doi.org/10.1038/s41586-020-2057-7
, 2019, A silicon quantum-dot-coupled nuclear spin qubit, http://dx.doi.org/10.48550/arxiv.1904.08260
, 2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.1038/s41586-020-2171-6
, 2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.1038/s41467-019-14053-w
, 2018, Single-spin qubits in isotopically enriched silicon at low magnetic field, http://dx.doi.org/10.48550/arxiv.1812.08347
, 2018, Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices, http://dx.doi.org/10.1103/PhysRevB.99.205306
, 2018, Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates, http://dx.doi.org/10.1103/PhysRevA.99.052321
, 2018, Gate-based single-shot readout of spins in silicon, http://dx.doi.org/10.1038/s41565-019-0400-7
, 2018, Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction, http://dx.doi.org/10.1103/PhysRevX.9.021028
, 2018, Silicon qubit fidelities approaching incoherent noise limits via pulse engineering, http://dx.doi.org/10.1038/s41928-019-0234-1
, 2018, High-fidelity and robust two-qubit gates for quantum-dot spin qubits in silicon, http://dx.doi.org/10.1103/PhysRevA.99.042310
, 2018, Fidelity benchmarks for two-qubit gates in silicon, http://dx.doi.org/10.1038/s41586-019-1197-0
, 2018, Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy, http://dx.doi.org/10.1103/PhysRevApplied.10.044017
, 2018, Impact of valley phase and splitting on readout of silicon spin qubits, http://dx.doi.org/10.48550/arxiv.1803.01811
, 2018, Gigahertz Single-Electron Pumping Mediated by Parasitic States, http://dx.doi.org/10.48550/arxiv.1803.00791
, 2018, Spin filling and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot, http://dx.doi.org/10.1038/s41467-018-05700-9
, 2017, Electron g-factor of valley states in realistic silicon quantum dots, http://dx.doi.org/10.48550/arxiv.1708.04555
, 2017, Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout, http://dx.doi.org/10.1038/s41467-018-06039-x
, 2017, Thermal-error regime in high-accuracy gigahertz single-electron pumping, http://dx.doi.org/10.1103/PhysRevApplied.8.044021
, 2017, Interface induced spin-orbit interaction in silicon quantum dots and prospects for scalability, http://dx.doi.org/10.1103/PhysRevB.97.241401
, 2017, Coherent control via weak measurements in $^{31}$P single-atom electron and nuclear spin qubits, http://dx.doi.org/10.1103/PhysRevB.98.155201
, 2016, Interfacing spin qubits in quantum dots and donors - hot, dense and coherent, http://dx.doi.org/10.1038/s41534-017-0038-y
, 2016, Valley splitting of single-electron Si MOS quantum dots, http://dx.doi.org/10.1063/1.4972514
, 2016, Dispersive readout of a silicon quantum dot with an accumulation-mode gate sensor, http://dx.doi.org/10.48550/arxiv.1610.00767
, 2016, Silicon CMOS architecture for a spin-based quantum computer, http://dx.doi.org/10.48550/arxiv.1609.09700
, 2016, Impact of g-factors and valleys on spin qubits in a silicon double quantum dot, http://dx.doi.org/10.1103/PhysRevB.96.045302
, 2016, A single-atom quantum memory in silicon, http://arxiv.org/abs/1608.07109v2
, 2016, A logical qubit in a linear array of semiconductor quantum dots, http://dx.doi.org/10.1103/PhysRevX.8.021058
, 2016, An electrically driven spin qubit based on valley mixing, http://dx.doi.org/10.48550/arxiv.1608.02189
, 2016, Optimization of a solid-state electron spin qubit using Gate Set Tomography, http://dx.doi.org/10.48550/arxiv.1606.02856
, 2016, Breaking the rotating wave approximation for a strongly-driven, dressed, single electron spin, http://dx.doi.org/10.1103/PhysRevB.94.161302
, 2016, A Dressed Spin Qubit in Silicon, http://dx.doi.org/10.1038/nnano.2016.178
, 2016, Three-waveform bidirectional pumping of single electrons with a silicon quantum dot, http://arxiv.org/abs/1603.01225v2
, 2015, Pauli Spin Blockade of Heavy Holes in a Silicon Double Quantum Dot, http://dx.doi.org/10.48550/arxiv.1509.00553
, 2015, A planar Al-Si Schottky Barrier MOSFET operated at cryogenic temperatures, http://dx.doi.org/10.1063/1.4928589
, 2015, Spin-orbit coupling and operation of multi-valley spin qubits, http://dx.doi.org/10.48550/arxiv.1505.01213
, 2015, Bell's inequality violation with spins in silicon, http://dx.doi.org/10.1038/nnano.2015.262
, 2015, Electrically controlling single spin qubits in a continuous microwave field, http://dx.doi.org/10.48550/arxiv.1503.05985
, 2015, Non-exponential Fidelity Decay in Randomized Benchmarking with Low-Frequency Noise, http://dx.doi.org/10.48550/arxiv.1502.05119
, 2015, Electron counting in a silicon single-electron pump, http://dx.doi.org/10.48550/arxiv.1502.04446
, 2014, A Two Qubit Logic Gate in Silicon, http://dx.doi.org/10.48550/arxiv.1411.5760