ORCID as entered in ROS

Select Publications
2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2019, Superconducting charge sensor coupled to an electron layer in silicon, http://arxiv.org/abs/1909.11976v1
,2019, Waiting time distributions in a two-level fluctuator coupled to a superconducting charge detector, http://dx.doi.org/10.1103/PhysRevResearch.1.033163
,2019, Controllable freezing of the nuclear spin bath in a single-atom spin qubit, http://dx.doi.org/10.1126/sciadv.aba3442
,2019, Coherent electrical control of a single high-spin nucleus in silicon, http://dx.doi.org/10.1038/s41586-020-2057-7
,2019, A silicon quantum-dot-coupled nuclear spin qubit, http://dx.doi.org/10.48550/arxiv.1904.08260
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.1038/s41586-020-2171-6
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.1038/s41467-019-14053-w
,2018, Single-spin qubits in isotopically enriched silicon at low magnetic field, http://dx.doi.org/10.48550/arxiv.1812.08347
,2018, Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices, http://dx.doi.org/10.1103/PhysRevB.99.205306
,2018, Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates, http://dx.doi.org/10.1103/PhysRevA.99.052321
,2018, Gate-based single-shot readout of spins in silicon, http://dx.doi.org/10.1038/s41565-019-0400-7
,2018, Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction, http://dx.doi.org/10.1103/PhysRevX.9.021028
,2018, Silicon qubit fidelities approaching incoherent noise limits via pulse engineering, http://dx.doi.org/10.1038/s41928-019-0234-1
,2018, High-fidelity and robust two-qubit gates for quantum-dot spin qubits in silicon, http://dx.doi.org/10.1103/PhysRevA.99.042310
,2018, Fidelity benchmarks for two-qubit gates in silicon, http://dx.doi.org/10.1038/s41586-019-1197-0
,2018, Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy, http://dx.doi.org/10.1103/PhysRevApplied.10.044017
,2018, Impact of valley phase and splitting on readout of silicon spin qubits, http://dx.doi.org/10.48550/arxiv.1803.01811
,2018, Gigahertz Single-Electron Pumping Mediated by Parasitic States, http://dx.doi.org/10.48550/arxiv.1803.00791
,2018, Spin filling and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot, http://dx.doi.org/10.1038/s41467-018-05700-9
,2017, Electron g-factor of valley states in realistic silicon quantum dots, http://dx.doi.org/10.48550/arxiv.1708.04555
,2017, Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout, http://dx.doi.org/10.1038/s41467-018-06039-x
,2017, Thermal-error regime in high-accuracy gigahertz single-electron pumping, http://dx.doi.org/10.1103/PhysRevApplied.8.044021
,2017, Interface induced spin-orbit interaction in silicon quantum dots and prospects for scalability, http://dx.doi.org/10.1103/PhysRevB.97.241401
,2017, Coherent control via weak measurements in $^{31}$P single-atom electron and nuclear spin qubits, http://dx.doi.org/10.1103/PhysRevB.98.155201
,2016, Interfacing spin qubits in quantum dots and donors - hot, dense and coherent, http://dx.doi.org/10.1038/s41534-017-0038-y
,2016, Valley splitting of single-electron Si MOS quantum dots, http://dx.doi.org/10.1063/1.4972514
,2016, Dispersive readout of a silicon quantum dot with an accumulation-mode gate sensor, http://dx.doi.org/10.48550/arxiv.1610.00767
,2016, Silicon CMOS architecture for a spin-based quantum computer, http://dx.doi.org/10.48550/arxiv.1609.09700
,2016, Impact of g-factors and valleys on spin qubits in a silicon double quantum dot, http://dx.doi.org/10.1103/PhysRevB.96.045302
,2016, A single-atom quantum memory in silicon, http://arxiv.org/abs/1608.07109v2
,2016, A logical qubit in a linear array of semiconductor quantum dots, http://dx.doi.org/10.1103/PhysRevX.8.021058
,2016, An electrically driven spin qubit based on valley mixing, http://dx.doi.org/10.48550/arxiv.1608.02189
,2016, Optimization of a solid-state electron spin qubit using Gate Set Tomography, http://dx.doi.org/10.48550/arxiv.1606.02856
,2016, Breaking the rotating wave approximation for a strongly-driven, dressed, single electron spin, http://dx.doi.org/10.1103/PhysRevB.94.161302
,2016, A Dressed Spin Qubit in Silicon, http://dx.doi.org/10.1038/nnano.2016.178
,2016, Three-waveform bidirectional pumping of single electrons with a silicon quantum dot, http://arxiv.org/abs/1603.01225v2
,2015, Pauli Spin Blockade of Heavy Holes in a Silicon Double Quantum Dot, http://dx.doi.org/10.48550/arxiv.1509.00553
,2015, A planar Al-Si Schottky Barrier MOSFET operated at cryogenic temperatures, http://dx.doi.org/10.48550/arxiv.1506.01224
,2015, Spin-orbit coupling and operation of multi-valley spin qubits, http://dx.doi.org/10.48550/arxiv.1505.01213
,2015, Bell's inequality violation with spins in silicon, http://dx.doi.org/10.1038/nnano.2015.262
,2015, Electrically controlling single spin qubits in a continuous microwave field, http://dx.doi.org/10.48550/arxiv.1503.05985
,2015, Non-exponential Fidelity Decay in Randomized Benchmarking with Low-Frequency Noise, http://dx.doi.org/10.48550/arxiv.1502.05119
,2015, Electron counting in a silicon single-electron pump, http://dx.doi.org/10.48550/arxiv.1502.04446
,2014, A Two Qubit Logic Gate in Silicon, http://dx.doi.org/10.48550/arxiv.1411.5760
,2014, Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking, http://dx.doi.org/10.48550/arxiv.1410.2338
,2014, Coherent Control of a Single Silicon-29 Nuclear Spin Qubit, http://dx.doi.org/10.48550/arxiv.1408.1347
,2014, An addressable quantum dot qubit with fault-tolerant control fidelity, http://dx.doi.org/10.48550/arxiv.1407.1950
,