ORCID as entered in ROS

Select Publications
2018, 'Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment', Nature Energy, 3, pp. 764 - 764, http://dx.doi.org/10.1038/s41560-018-0206-0
,2018, 'Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells', Advanced Energy Materials, 8, pp. 1800138 - 1800138, http://dx.doi.org/10.1002/aenm.201800138
,2018, 'Famatinite Cu3SbS4 nanocrystals as hole transporting material for efficient perovskite solar cells', Journal of Materials Chemistry C, 6, pp. 7989 - 7993, http://dx.doi.org/10.1039/c8tc02133c
,2018, 'Ionic liquid modified SnO2 nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells', Journal of Materials Chemistry A, 6, pp. 22086 - 22095, http://dx.doi.org/10.1039/c8ta04131h
,2018, 'Self-assembled nanometer-scale ZnS structure at the CZTS/ZnCdS heterointerface for high-efficiency wide band gap Cu 2 ZnSnS 4 solar cells', Chemistry of Materials, 30, pp. 4008 - 4016, http://dx.doi.org/10.1021/acs.chemmater.8b00009
,2017, 'Efficiency Enhancement of Kesterite Cu2ZnSnS4 Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface', ACS Applied Energy Materials, 1, pp. 154 - 160, http://dx.doi.org/10.1021/acsaem.7b00044
,2017, 'Effects of Al thickness on one-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering', Materials Letters, 209, pp. 32 - 35, http://dx.doi.org/10.1016/j.matlet.2017.07.103
,2017, 'Monolithic Wide Band Gap Perovskite/Perovskite Tandem Solar Cells with Organic Recombination Layers', Journal of Physical Chemistry C, 121, pp. 27256 - 27262, http://dx.doi.org/10.1021/acs.jpcc.7b05517
,2017, 'Diode laser annealing of epitaxy Ge on sapphire (0 0 0 1) grown by magnetron sputtering', Materials Letters, 208, pp. 35 - 38, http://dx.doi.org/10.1016/j.matlet.2017.05.043
,2017, 'Low-temperature solution processed random silver nanowire as a promising replacement for indium tin oxide', ACS Applied Materials and Interfaces, 9, pp. 34093 - 34100, http://dx.doi.org/10.1021/acsami.7b13085
,2017, 'Hybrid Ag Nanowire-ITO as Transparent Conductive Electrode for Pure Sulfide Kesterite Cu2ZnSnS4 Solar Cells', Journal of Physical Chemistry C, 121, pp. 20597 - 20604, http://dx.doi.org/10.1021/acs.jpcc.7b05776
,2017, 'Modeling of continuous wave laser melting of germanium epitaxial films on silicon substrates', Materials Express, 7, pp. 341 - 350, http://dx.doi.org/10.1166/mex.2017.1382
,2017, 'Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene', ACS Applied Materials and Interfaces, 9, pp. 25073 - 25081, http://dx.doi.org/10.1021/acsami.7b07625
,2017, 'Light-Bias-Dependent External Quantum Efficiency of Kesterite Cu2ZnSnS4 Solar Cells', ACS Photonics, 4, pp. 1684 - 1690, http://dx.doi.org/10.1021/acsphotonics.7b00151
,2017, 'Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact', NPG Asia Mater, 9, pp. e401, http://dx.doi.org/10.1038/am.2017.103
,2017, 'Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition', Solar Energy Materials and Solar Cells, 166, pp. 91 - 99, http://dx.doi.org/10.1016/j.solmat.2017.03.002
,2017, 'Diode laser annealing on sputtered epitaxial Cu2ZnSnS4 thin films', Physica Status Solidi Rapid Research Letters, 11, http://dx.doi.org/10.1002/pssr.201700033
,2017, 'The effect of vacuum thermal annealing on the molybdenum bilayer back contact deposited by radio-frequency magnetron sputtering for chalcogenide and kesterite based solar cells', Journal of the Korean Physical Society, 71, pp. 968 - 973, http://dx.doi.org/10.3938/jkps.71.968
,2017, 'Spatial Grain Growth and Composition Evolution during Sulfurizing Metastable Wurtzite Cu2ZnSnS4 Nanocrystal-Based Coatings', Chemistry of Materials, 29, pp. 2110 - 2121, http://dx.doi.org/10.1021/acs.chemmater.6b04603
,2017, 'Fabrication of efficient Cu 2 ZnSnS 4 solar cells by sputtering single stoichiometric target', Coatings, 7, pp. 19, http://dx.doi.org/10.3390/coatings7020019
,2017, 'Sentaurus modelling of 6.9% Cu2ZnSnS4 device based on comprehensive electrical & optical characterization', Solar Energy Materials and Solar Cells, 160, pp. 372 - 381, http://dx.doi.org/10.1016/j.solmat.2016.10.053
,2017, 'In situ X-ray diffraction study on epitaxial growth of SixGe1−xon Si by aluminium-assisted crystallization', Journal of Alloys and Compounds, 695, pp. 1672 - 1676, http://dx.doi.org/10.1016/j.jallcom.2016.10.315
,2017, 'Beyond 11% Efficient Sulfide Kesterite Cu2ZnxCd1–xSnS4 Solar Cell: Effects of Cadmium Alloying', ACS Energy Letters, 2, pp. 930 - 936, http://dx.doi.org/10.1021/acsenergylett.7b00129
,2017, 'Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks', Solar Energy Materials and Solar Cells, 160, pp. 7 - 11, http://dx.doi.org/10.1016/j.solmat.2016.09.027
,2016, 'Lattice-matched Cu2ZnSnS4/CeO2 solar cell with open circuit voltage boost', Applied Physics Letters, 109, http://dx.doi.org/10.1063/1.4971779
,2016, 'Diode laser annealing on Ge/Si (100) epitaxial films grown by magnetron sputtering', Thin Solid Films, 609, pp. 49 - 52, http://dx.doi.org/10.1016/j.tsf.2016.04.040
,2016, 'The current status and future prospects of kesterite solar cells: A brief review', Progress in Photovoltaics Research and Applications, 24, pp. 879 - 898, http://dx.doi.org/10.1002/pip.2741
,2016, 'Efficient Planar Perovskite Solar Cells with Reduced Hysteresis and Enhanced Open Circuit Voltage by Using PW12-TiO2 as Electron Transport Layer', ACS Applied Materials and Interfaces, 8, pp. 8520 - 8526, http://dx.doi.org/10.1021/acsami.6b00846
,2016, 'Temperature dependent electroluminescence from all-Si-nanocrystal p-i-n diodes grown on dielectric substrates', Journal of Applied Physics, 119, http://dx.doi.org/10.1063/1.4941695
,2016, 'Highly efficient perovskite solar cells with precursor composition-dependent morphology', Solar Energy Materials and Solar Cells, 145, pp. 231 - 237, http://dx.doi.org/10.1016/j.solmat.2015.10.032
,2016, 'Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite', Nanoscale, 8, pp. 1926 - 1931, http://dx.doi.org/10.1039/c5nr07993d
,2016, 'In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells', Rsc Advances, 6, pp. 4108 - 4115, http://dx.doi.org/10.1039/c5ra24144h
,2016, 'Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers', Solar Energy Materials and Solar Cells, 144, pp. 700 - 706, http://dx.doi.org/10.1016/j.solmat.2015.10.019
,2016, 'Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates', Solar Energy Materials and Solar Cells, 157, pp. 565 - 571, http://dx.doi.org/10.1016/j.solmat.2016.07.036
,2016, 'Modification of absorber quality and Mo-back contact by a thin Bi intermediate layer for kesterite Cu2ZnSnS4 solar cells', Solar Energy Materials and Solar Cells, 144, pp. 537 - 543, http://dx.doi.org/10.1016/j.solmat.2015.09.066
,2016, 'Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells', Advanced Energy Materials, 6, pp. n/a - n/a, http://dx.doi.org/10.1002/aenm.201600706
,2016, 'Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1–xCdxS Buffer Layer', Advanced Energy Materials, 6, pp. n/a - n/a, http://dx.doi.org/10.1002/aenm.201600046
,2016, 'Understanding the Key Factors of Enhancing Phase and Compositional Controllability for 6% Efficient Pure-Sulfide Cu2ZnSnS4 Solar Cells Prepared from Quaternary Wurtzite Nanocrystals', Chemistry of Materials, 28, pp. 3649 - 3658, http://dx.doi.org/10.1021/acs.chemmater.5b04620
,2015, 'Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting', Journal of Physical Chemistry Letters, 6, pp. 3931 - 3934, http://dx.doi.org/10.1021/acs.jpclett.5b01608
,2015, 'Improvement of Jsc in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface', ACS Applied Materials and Interfaces, 7, pp. 22868 - 22873, http://dx.doi.org/10.1021/acsami.5b05652
,2015, 'Kesterite Cu2ZnSnS4 thin film solar cells by a facile DMF-based solution coating process', Journal of Materials Chemistry C, 3, pp. 10783 - 10792, http://dx.doi.org/10.1039/c5tc01750e
,2015, 'Characterization of a Cu2ZnSnS4 solar cell fabricated by sulfurization of metallic precursor Mo/Zn/Cu/Sn', Physica Status Solidi A Applications and Materials Science, 212, pp. 2074 - 2079, http://dx.doi.org/10.1002/pssa.201431942
,2015, 'Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol–Gel and Selenization Process', ACS Applied Materials & Interfaces, pp. null - null, http://dx.doi.org/10.1021/acsami.5b01151
,2015, 'Epitaxial Cu2ZnSnS4 thin film on Si (111) 4° substrate', Applied Physics Letters, 106, http://dx.doi.org/10.1063/1.4922992
,2015, 'The effect of ZnS segregation on Zn-rich CZTS thin film solar cells', Journal of Alloys and Compounds, 632, pp. 178 - 184, http://dx.doi.org/10.1016/j.jallcom.2015.01.205
,2015, 'Rapid thermal annealed Molybdenum back contact for Cu2ZnSnS4 thin film solar cells', Applied Physics Letters, 106, http://dx.doi.org/10.1063/1.4916994
,2015, 'The role of Ag in (Ag,Cu)2ZnSnS4 thin film for solar cell application', Journal of Alloys and Compounds, 625, pp. 277 - 283, http://dx.doi.org/10.1016/j.jallcom.2014.11.136
,2015, 'Designing bottom silicon solar cells for multijunction devices', IEEE Journal of Photovoltaics, 5, pp. 683 - 690, http://dx.doi.org/10.1109/JPHOTOV.2014.2381875
,2015, 'Optimization of precursor deposition for evaporated Cu2ZnSnS4 solar cells', Applied Physics A Materials Science and Processing, 118, pp. 893 - 899, http://dx.doi.org/10.1007/s00339-014-8806-4
,2015, 'Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition', Journal of Physical Chemistry C, 119, pp. 3545 - 3549, http://dx.doi.org/10.1021/jp512936z
,