ORCID as entered in ROS

Select Publications
2024, 'Electronic and Optical Properties of Perovskite Semiconductor', in Engineering Materials, pp. 51 - 70, http://dx.doi.org/10.1007/978-3-031-57663-8_3
,2018, 'Epitaxial Growth of Ge on Si by Magnetron Sputtering', in Epitaxy
,2017, 'Electronic Structure of Cu2ZnSn1-xGexS4 New Energy Materials Probed by Soft X-Ray Absorption Spectroscopy', in Materials in Environmental Engineering, De Gruyter, pp. 329 - 338, http://dx.doi.org/10.1515/9783110516623-031
,2025, 'Benzalkonium chloride assisted quenching-free fabrication of nonalloyed FAPbI3 perovskite films and solar cells', Chemical Engineering Journal, 513, http://dx.doi.org/10.1016/j.cej.2025.162771
,2025, 'Copper indium sulfide colloidal quantum dots: Advances in synthesis, structure-optoelectronic properties, and applications', Advanced Powder Materials, 4, http://dx.doi.org/10.1016/j.apmate.2025.100283
,2025, 'Unassisted Photoelectrochemical Hydrogen Production Coupled with Selective Glucose Oxidation Using Metal Halide Perovskite Photoanodes', Advanced Functional Materials, http://dx.doi.org/10.1002/adfm.202505281
,2025, 'The Rise of Chalcohalide Solar Cells: Comprehensive Insights From Materials to Devices', Advanced Science, 12, http://dx.doi.org/10.1002/advs.202413131
,2025, 'Dip‐Coating of Self‐Assembled Monolayers for Perovskite Photovoltaic Applications', EcoEnergy, http://dx.doi.org/10.1002/ece2.70007
,2025, 'Assessing solar-to-PV power conversion models: Physical, ML, and hybrid approaches across diverse scales', Energy, 323, http://dx.doi.org/10.1016/j.energy.2025.135744
,2025, 'Nanoengineered Kesterite Photocathodes: Enhancing Photoelectrochemical Performance for Water Splitting and Beyond', ACS Nano, 19, pp. 17041 - 17061, http://dx.doi.org/10.1021/acsnano.5c01821
,2025, 'Disentangling Carrier-Transport and Interfacial Carrier-Recombination by Mitigating Na Interstitials for 11.9% Efficient Cd-Free Cu2ZnSnS4 Solar Cells', Small, 21, http://dx.doi.org/10.1002/smll.202501905
,2025, 'Constructing A Carrier Collection Framework at The Rear Interface in Cu2ZnSn(S, Se)4 Solar Cells by Selenizing an Inserted CuBi2O4 Nanolayer', ACS Applied Materials and Interfaces, 17, pp. 26480 - 26490, http://dx.doi.org/10.1021/acsami.4c14234
,2025, 'Luminescence-based implied voltage imaging of tandem solar cells using bandpass filters', Small Methods, 9, http://dx.doi.org/10.1002/smtd.202401003
,2025, 'Conversion of photovoltaic waste silicon into amorphous silicon nanowire anodes', Energy and Environmental Science, 18, pp. 4348 - 4361, http://dx.doi.org/10.1039/d5ee00020c
,2025, 'Hybrid SnO2/g-C3N4 layers with plasma-induced modifications for enhanced charge transport in perovskite solar cells', Journal of Materials Chemistry A, 13, pp. 12949 - 12956, http://dx.doi.org/10.1039/d5ta00480b
,2025, 'Hydrogen-enhanced carrier collection enabling wide-bandgap Cd-free Cu2ZnSnS4 solar cells with 11.4% certified efficiency', Nature Energy, 10, pp. 255 - 265, http://dx.doi.org/10.1038/s41560-024-01694-5
,2025, 'Efficient charge separation at localized 2D ferroelectric domains in perovskite solar cells', Energy and Environmental Science, http://dx.doi.org/10.1039/d5ee00640f
,2025, 'Integrated Photo-Rechargeable Batteries: Configurations, Design Principles, and Energy Loss Mechanisms', Small Science, http://dx.doi.org/10.1002/smsc.202400598
,2025, 'Opportunities and challenges for emerging inorganic chalcogenide-silicon tandem solar cells', Energy and Environmental Science, http://dx.doi.org/10.1039/d4ee04526b
,2025, 'Outdoor implied open-circuit voltage imaging of perovskite solar cells using sunlight excitation', Joule, http://dx.doi.org/10.1016/j.joule.2025.101946
,2025, 'Solar Cell Efficiency Tables (Version 65)', Progress in Photovoltaics Research and Applications, 33, pp. 3 - 15, http://dx.doi.org/10.1002/pip.3867
,2025, 'Solar Cell Efficiency Tables (Version 66)', Progress in Photovoltaics Research and Applications, http://dx.doi.org/10.1002/pip.3919
,2025, 'Suppression of Deep-Level Defects Recombination in Cu2ZnSn(S, Se)4 Solar Cells Through Rear-Interface Cesium Doping', Small, http://dx.doi.org/10.1002/smll.202411241
,2024, 'Methylammonium-Free Ink for Blade-Coating of Pure-Phase α-FAPbI3 Perovskite Films in Air', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202410266
,2024, 'Exotic ferroelectricity in strained BaZrS3 chalcogenide perovskite for photovoltaics', Communications Materials, 5, http://dx.doi.org/10.1038/s43246-024-00705-y
,2024, 'Cd-Free High-Bandgap Cu2ZnSnS4 Solar Cell with 10.7% Certified Efficiency Enabled by Engineering Sn-Related Defects', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202407063
,2024, 'Highly Efficient Wide Bandgap Perovskite Solar Cells With Tunneling Junction by Self-Assembled 2D Dielectric Layer', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202402053
,2024, 'CuSb: The dominant defect in Cu-rich CuSbS2 solar cells fabricated by sulfurizing co-sputtered Cu–Sb precursor', Solar Energy Materials and Solar Cells, 273, http://dx.doi.org/10.1016/j.solmat.2024.112935
,2024, 'Methylammonium-Free Ink for Low-Temperature Crystallization of α-FAPbI3 Perovskite', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202400932
,2024, 'Using Advanced Micro-to-atomic Scale Characterizations to Explore the Role of Ge in CZTSSe Solar Cells', Microscopy and Microanalysis, 30, pp. 1976 - 1977, http://dx.doi.org/10.1093/mam/ozae044.977
,2024, 'Solar driven ammonia synthesis with Co-TiOx and Ag nanowires enhanced Cu2ZnSnS4 photocathodes', Applied Catalysis B Environmental, 348, http://dx.doi.org/10.1016/j.apcatb.2024.123836
,2024, 'Nanostructured hybrid catalysts empower the artificial leaf for solar-driven ammonia production from nitrate', Energy and Environmental Science, 17, pp. 5653 - 5665, http://dx.doi.org/10.1039/d3ee03836j
,2024, 'Refining Photothermal Deflection Spectroscopy: Incorporating Reflectance for Enhanced Accuracy in Light-Absorption Measurements', Physica Status Solidi A Applications and Materials Science, 221, http://dx.doi.org/10.1002/pssa.202300585
,2024, 'Solar cell efficiency tables (Version 64)', Progress in Photovoltaics Research and Applications, 32, pp. 425 - 441, http://dx.doi.org/10.1002/pip.3831
,2024, 'A collaborative framework for unifying typical multidimensional solar cell simulations – Part I. Ten common simulation steps and representing variables', Progress in Photovoltaics Research and Applications, 32, pp. 330 - 345, http://dx.doi.org/10.1002/pip.3779
,2024, 'Polymorphs of Copper Zinc Tin Sulfide: Optoelectronic Properties and Detection Using Raman', Solar Rrl, 8, http://dx.doi.org/10.1002/solr.202400010
,2024, 'Unveiling the Role of Ge in CZTSSe Solar Cells by Advanced Micro-To-Atom Scale Characterizations', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202305938
,2024, 'Facile Approach for Metallic Precursor Engineering for Efficient Kesterite Thin-Film Solar Cells', ACS Applied Materials and Interfaces, 16, pp. 16328 - 16339, http://dx.doi.org/10.1021/acsami.4c01230
,2024, 'Thermal Disorder-Induced Strain and Carrier Localization Activate Reverse Halide Segregation', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202311458
,2024, 'The Intermediate Connection of Subcells in Si-based Tandem Solar Cells', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202300432
,2024, 'Biomimetic Electronic Skin through Hierarchical Polymer Structural Design', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202309006
,2024, 'Multifunctional Surface Treatment against Imperfections and Halide Segregation in Wide-Band Gap Perovskite Solar Cells', ACS Applied Materials and Interfaces, 16, pp. 7961 - 7972, http://dx.doi.org/10.1021/acsami.3c12616
,2024, 'Influence of Organic Spacer Cation on Dark Excitons in 2D Perovskites', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202308095
,2024, 'Cu2(Thiourea)Br2 complex as a multifunctional interfacial layer for reproducible PTAA‐based p‐i‐n perovskite solar cells', Solar RRL, http://dx.doi.org/10.1002/solr.202300920
,2024, 'Cd-Free Pure Sulfide Kesterite Cu2ZnSnS4 Solar Cell with Over 800 mV Open-Circuit Voltage Enabled by Phase Evolution Intervention', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202307733
,2024, 'Doped-NiOx Seed Layer on Textured Substrates for Low-Loss Contacts in Perovskite Solar Cells', Advanced Energy Materials, http://dx.doi.org/10.1002/aenm.202405016
,2024, 'Solar cell efficiency tables (Version 63)', Progress in Photovoltaics Research and Applications, 32, pp. 3 - 13, http://dx.doi.org/10.1002/pip.3750
,2024, 'Improved carrier collection efficiency in CZTS solar cells by Li‐enhanced liquid‐phase‐assisted grain growth', EcoEnergy, 2, pp. 181 - 191, http://dx.doi.org/10.1002/ece2.31
,2024, 'Methylammonium‐Free Ink for Low‐Temperature Crystallization of α‐FAPbI3 Perovskite (Adv. Energy Mater. 30/2024)', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202470124
,2024, 'Polymorphs of Copper Zinc Tin Sulfide: Optoelectronic Properties and Detection Using Raman', Solar RRL, 8, http://dx.doi.org/10.1002/solr.202470093
,