ORCID as entered in ROS

Select Publications
2008, 'Electron capture, femtosecond electron transfer and theory: A study of noncovalent crown ether 1,n-diammonium alkane complexes', International Journal of Mass Spectrometry, 276, pp. 116 - 126, http://dx.doi.org/10.1016/j.ijms.2008.04.021
,2008, 'Electron capture by a hydrated gaseous peptide: Effects of water on fragmentation and molecular survival', Journal of the American Chemical Society, 130, pp. 12680 - 12689, http://dx.doi.org/10.1021/ja8022434
,2008, 'Evaluation of different implementations of the thomson liquid drop model: Comparison to monovalent and divalent cluster ion experimental data', Journal of Physical Chemistry A, 112, pp. 3515 - 3522, http://dx.doi.org/10.1021/jp711012b
,2008, 'Absolute standard hydrogen electrode potential measured by reduction of aqueous nanodrops in the gas phase', Journal of the American Chemical Society, 130, pp. 3371 - 3381, http://dx.doi.org/10.1021/ja073946i
,2007, 'Nonergodicity in Electron Capture Dissociation Investigated Using Hydrated Ion Nanocalorimetry', Journal of the American Society for Mass Spectrometry, 18, pp. 1217 - 1231, http://dx.doi.org/10.1016/j.jasms.2007.03.033
,2007, 'Reduction energy of 1 M aqueous ruthenium(III) hexaammine in the gas phase: A route toward establishing an absolute electrochemical scale', Journal of the American Chemical Society, 129, pp. 7716 - 7717, http://dx.doi.org/10.1021/ja067794n
,2007, 'Vibrational analysis of n-butyl, isobutyl, sec-butyl and tert-butyl nitrite', Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 67, pp. 178 - 187, http://dx.doi.org/10.1016/j.saa.2006.06.042
,2007, 'Internal energy deposition in electron capture dissociation measured using hydrated divalent metal ions as nanocalorimeters', Journal of the American Chemical Society, 129, pp. 4894 - 4895, http://dx.doi.org/10.1021/ja0666607
,'HiTIME: An efficient model-selection approach for the detection of unknown drug metabolites in LC-MS data', SOFTWAREX, 12, http://dx.doi.org/10.1016/j.softx.2020.100559
,2021, Visible light switching of metallosupramolecular assemblies, http://dx.doi.org10.33774/chemrxiv-2021-rfd1m, https://doi.org/10.33774/chemrxiv-2021-rfd1m
,2025, Photoswitchable merocyanine-amphiphiles with programmable self-assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n-v3
,2025, Photoswitchable merocyanine-amphiphiles with programmable self-assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n-v2
,2025, Photoresponsive assemblies of spiropyran-amphiphiles with programmable assembly times, http://dx.doi.org/10.26434/chemrxiv-2025-qwl4n
,2024, Rapid, Non-Invasive Breath Analysis for Enhancing Detection of Silicosis Using Mass Spectrometry and Interpretable Machine Learning, http://dx.doi.org/10.1101/2024.09.30.24314664
,2024, Metal-Organic Frameworks for the Trace Multiplexed Adsorption and Quantitation of 50 Per- and Polyfluoroalkyl Substances, http://dx.doi.org/10.26434/chemrxiv-2024-qkvkd-v2
,2024, Metal-Organic Frameworks for the Trace Multiplexed Quantitation of 50 PFAS by Liquid Chromatography Mass Spectrometry, http://dx.doi.org/10.26434/chemrxiv-2024-qkvkd
,2024, Phosphorylation Strongly Affects the Inhibition of Human Carbonic Anhydrase I CO2 Hydration Activity, http://dx.doi.org/10.26434/chemrxiv-2024-nmrqj
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v5
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v4
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v3
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj-v2
,2024, Photoswitchable catalysis by a self-assembled molecular cage, http://dx.doi.org/10.26434/chemrxiv-2024-vdkfj
,2023, Binding of Per- and Polyfluoroalkyl Substances to β-Lactoglobulin from Bovine Milk, http://dx.doi.org/10.26434/chemrxiv-2023-ncx12-v2
,2023, Binding of Per- and Polyfluoroalkyl Substances to β-Lactoglobulin from Bovine Milk, http://dx.doi.org/10.26434/chemrxiv-2023-ncx12
,2023, Rapid In-Field Volatile Sampling for Detection and Quantification of Botrytis cinerea Infection in Wine Grapes, http://dx.doi.org/10.20944/preprints202306.0067.v1
,2023, Effects of phosphorylation on the activity, inhibition and stability of carbonic anhydrases, http://dx.doi.org/10.26434/chemrxiv-2023-r1cs3
,2023, Oligomeric remodelling by molecular glues revealed using native mass spectrometry and mass photometry, http://dx.doi.org/10.26434/chemrxiv-2023-f6cqh
,2023, Prediction of Botrytis Cinerea Infection Levels in Wine Grapes Using Headspace Spme Gc-Ms Volatile Analysis, http://dx.doi.org/10.2139/ssrn.4330915
,2023, Protein interaction kinetics delimit the performance of phosphorylation-driven protein switches, http://dx.doi.org/10.1101/2023.11.06.565761
,2022, Interpretable machine learning on metabolomics data reveals biomarkers for Parkinson’s disease, http://dx.doi.org/10.26434/chemrxiv-2022-r7gjb
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v4
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v3
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k-v2
,2022, Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination, http://dx.doi.org/10.26434/chemrxiv-2022-g5f6k
,2022, On the mechanism of theta capillary nanoelectrospray ionization for the formation of highly charged protein ions directly from native solutions, http://dx.doi.org/10.26434/chemrxiv-2022-lvptc
,2022, Separation of disaccharide epimers, anomers and connectivity isomers by high resolution differential ion mobility mass spectrometry, http://dx.doi.org/10.26434/chemrxiv-2021-zjst9-v3
,2022, Separation of disaccharide epimers, anomers and connectivity isomers by high resolution differential ion mobility mass spectrometry, http://dx.doi.org/10.26434/chemrxiv-2021-zjst9-v2
,2022, Separation of disaccharide epimers, anomers and connectivity isomers by high resolution differential ion mobility mass spectrometry, http://dx.doi.org/10.33774/chemrxiv-2021-zjst9-v2
,2021, Multiplexed screening of thousands of natural products for protein-ligand binding in native mass spectrometry, http://dx.doi.org/10.33774/chemrxiv-2021-sc39c-v2
,2021, Multiplexed screening of thousands of natural products for protein-ligand binding in native mass spectrometry, http://dx.doi.org/10.26434/chemrxiv-2021-sc39c-v2
,2021, Multiplexed screening of thousands of natural products for protein-ligand binding in native mass spectrometry, http://dx.doi.org/10.33774/chemrxiv-2021-sc39c
,2021, Multiplexed screening of thousands of natural products for protein-ligand binding in native mass spectrometry, http://dx.doi.org/10.26434/chemrxiv-2021-sc39c
,2021, Visible light switching of metallosupramolecular assemblies, http://dx.doi.org/10.26434/chemrxiv-2021-rfd1m
,2021, Separation of disaccharide epimers, anomers and connectivity isomers by high resolution differential ion mobility mass spectrometry, http://dx.doi.org/10.33774/chemrxiv-2021-zjst9
,2021, Separation of disaccharide epimers, anomers and connectivity isomers by high resolution differential ion mobility mass spectrometry, http://dx.doi.org/10.26434/chemrxiv-2021-zjst9
,2020, Stage-1 Cationic C60 Intercalated Graphene Oxide Films, http://dx.doi.org/10.26434/chemrxiv.12931880
,2020, Stage-1 Cationic C60 Intercalated Graphene Oxide Films, http://dx.doi.org/10.26434/chemrxiv.12931880.v1
,