ORCID as entered in ROS

Select Publications
2019, 'Investigation of K modified P2 Na 0.7 Mn 0.8 Mg 0.2 O 2 as a cathode material for sodium-ion batteries', Crystengcomm, 21, pp. 172 - 181, http://dx.doi.org/10.1039/c8ce01532e
,2019, 'Mechanistic insights into the phenomena of increasing capacity with cycle number: Using pulsed-laser deposited MoO2 thin film electrodes', Physical Chemistry Chemical Physics, 21, pp. 25779 - 25787, http://dx.doi.org/10.1039/c9cp05718h
,2018, 'Solid State and Materials Chemistry for Sodium‐Ion Batteries', , pp. 1 - 36, http://dx.doi.org/10.1002/9781119951438.eibc2657
,2018, 'Hybrid Solid Polymer Electrolytes with Two-Dimensional Inorganic Nanofillers', Chemistry A European Journal, 24, pp. 18180 - 18203, http://dx.doi.org/10.1002/chem.201804781
,2018, 'Graphene and magnesiated graphene as electrodes for magnesium ion batteries', Materials Letters, 232, pp. 103 - 106, http://dx.doi.org/10.1016/j.matlet.2018.08.080
,2018, 'Rate and Composition Dependence on the Structural-Electrochemical Relationships in P2-Na2/3Fe1- yMnyO2 Positive Electrodes for Sodium-Ion Batteries', Chemistry of Materials, 30, pp. 7503 - 7510, http://dx.doi.org/10.1021/acs.chemmater.8b02456
,2018, 'Electrochemical Modification of Negative Thermal Expansion Materials in the Ta xNb1- xVO5 Series', Inorganic Chemistry, 57, pp. 10633 - 10639, http://dx.doi.org/10.1021/acs.inorgchem.8b01280
,2018, 'Towards a reliable Li-metal-free LiNO3-free Li-ion polysulphide full cell: Via parallel interface engineering', Energy and Environmental Science, 11, pp. 2509 - 2520, http://dx.doi.org/10.1039/c8ee00937f
,2018, 'Structural evidence for Mg-doped LiFePO4 electrode polarisation in commercial Li-ion batteries', Journal of Power Sources, 394, pp. 1 - 8, http://dx.doi.org/10.1016/j.jpowsour.2018.05.024
,2018, 'High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-: XMgxMn2/3O2 (0 ≤ x ≤ 0.2) cathodes from diffraction, electrochemical and ab initio studies', Energy and Environmental Science, 11, pp. 1470 - 1479, http://dx.doi.org/10.1039/c7ee02995k
,2018, 'Local Structure Adaptations and Oxide Ionic Conductivity in the Type III Stability Region of (1 - X)Bi2O3· xNb2O5', Chemistry of Materials, 30, pp. 3387 - 3394, http://dx.doi.org/10.1021/acs.chemmater.8b00846
,2018, 'Electrochemical performance and structure of Al2W3-: XMoxO12', Crystengcomm, 20, pp. 1352 - 1360, http://dx.doi.org/10.1039/c7ce01707c
,2018, 'Electrochemically activated solid synthesis: An alternative solid-state synthetic method', Dalton Transactions, 47, pp. 14604 - 14611, http://dx.doi.org/10.1039/c8dt02946f
,2018, 'Insight into the formation of lithium alloys in all-solid-state thin film lithium batteries', Frontiers in Energy Research, 6, http://dx.doi.org/10.3389/fenrg.2018.00064
,2018, 'Investigating low-valent compositions in the Na3V2O2: X(PO4)2F3-2 x family: Structural transitions and their consequences', Dalton Transactions, 47, pp. 2610 - 2618, http://dx.doi.org/10.1039/c8dt00086g
,2018, 'On the dynamics of transition metal migration and its impact on the performance of layered oxides for sodium-ion batteries: NaFeO2 as a case study', Journal of Materials Chemistry A, 6, pp. 15132 - 15146, http://dx.doi.org/10.1039/c8ta02473a
,2018, 'SmFeO3 and Bi-doped SmFeO3 perovskites as an alternative class of electrodes in lithium-ion batteries', Crystengcomm, 20, pp. 6165 - 6172, http://dx.doi.org/10.1039/c8ce00780b
,2018, 'Structural evolution and stability of Sc2(WO4)3 after discharge in a sodium-based electrochemical cell', Dalton Transactions, 47, pp. 1251 - 1260, http://dx.doi.org/10.1039/c7dt04374k
,2018, 'The crystal structures and corresponding ion-irradiation response for the Tb(x)Yb(2−x)TiO5 series', Ceramics International, 44, pp. 511 - 519, http://dx.doi.org/10.1016/j.ceramint.2017.09.205
,2017, 'An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries', Advanced Energy Materials, 7, http://dx.doi.org/10.1002/aenm.201602911
,2017, 'An Operando Mechanistic Evaluation of a Solar-Rechargeable Sodium-Ion Intercalation Battery', Advanced Energy Materials, 7, http://dx.doi.org/10.1002/aenm.201700545
,2017, 'Effect of Ni-nanoparticles decoration on graphene to enable high capacity sodium-ion battery negative electrodes', Electrochimica Acta, 250, pp. 212 - 218, http://dx.doi.org/10.1016/j.electacta.2017.08.049
,2017, 'Structure-Electrochemical Evolution of a Mn-Rich P2 Na2/3Fe0.2Mn0.8O2 Na-Ion Battery Cathode', Chemistry of Materials, 29, pp. 7416 - 7423, http://dx.doi.org/10.1021/acs.chemmater.7b02397
,2017, 'The NaxMoO2 Phase Diagram (1/2 ≲ x < 1): An Electrochemical Devil's Staircase', Chemistry of Materials, 29, pp. 7243 - 7254, http://dx.doi.org/10.1021/acs.chemmater.7b01834
,2017, 'Application of Operando Methods for Characterisation of Structural Evolution in Electrochemical Systems', ECS Meeting Abstracts, MA2017-02, pp. 187 - 187, http://dx.doi.org/10.1149/ma2017-02/3/187
,2017, 'Novel Electrode Materials By Modification Route of Negative Thermal Expansion Materials', ECS Meeting Abstracts, MA2017-02, pp. 196 - 196, http://dx.doi.org/10.1149/ma2017-02/3/196
,2017, 'Operando and in Situ Diffraction Investigation of Lithium-Ion Batteries: What Have We Learnt over the Years and Where Are We Heading?', ECS Meeting Abstracts, MA2017-02, pp. 234 - 234, http://dx.doi.org/10.1149/ma2017-02/4/234
,2017, 'Understanding the Behavior of LiCoO2 Cathodes at Extended Potentials in Ionic Liquid-Alkyl Carbonate Hybrid Electrolytes', Journal of Physical Chemistry C, 121, pp. 15630 - 15638, http://dx.doi.org/10.1021/acs.jpcc.7b05591
,2017, 'Capacity Enhancement of the Quenched Li-Ni-Mn-Co Oxide High-voltage Li-ion Battery Positive Electrode', Electrochimica Acta, 236, pp. 10 - 17, http://dx.doi.org/10.1016/j.electacta.2017.03.163
,2017, 'Mechanisms of sodium insertion/extraction on the surface of defective graphenes', ACS Applied Materials and Interfaces, 9, pp. 431 - 438, http://dx.doi.org/10.1021/acsami.6b13104
,2017, 'Correlating cycling history with structural evolution in commercial 26650 batteries using in operando neutron powder diffraction', Journal of Power Sources, 343, pp. 446 - 457, http://dx.doi.org/10.1016/j.jpowsour.2016.12.103
,2017, 'In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4in a commercial battery', Journal of Power Sources, 342, pp. 562 - 569, http://dx.doi.org/10.1016/j.jpowsour.2016.12.048
,2017, 'Maricite NaFePO4/C/graphene: A novel hybrid cathode for sodium-ion batteries', Journal of Materials Chemistry A, 5, pp. 16616 - 16621, http://dx.doi.org/10.1039/c7ta04946c
,2017, 'Batteries: An Operando Mechanistic Evaluation of a Solar‐Rechargeable Sodium‐Ion Intercalation Battery (Adv. Energy Mater. 19/2017)', Advanced Energy Materials, 7, http://dx.doi.org/10.1002/aenm.201770108
,2016, 'Lithium Germanate (Li2GeO3): A High‐Performance Anode Material for Lithium‐Ion Batteries', Angewandte Chemie, 128, pp. 16293 - 16297, http://dx.doi.org/10.1002/ange.201609343
,2016, 'Lithium Germanate (Li2GeO3): A High-Performance Anode Material for Lithium-Ion Batteries', Angewandte Chemie International Edition, 55, pp. 16059 - 16063, http://dx.doi.org/10.1002/anie.201609343
,2016, 'Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries', ACS Applied Materials and Interfaces, 8, pp. 30152 - 30164, http://dx.doi.org/10.1021/acsami.6b09619
,2016, 'Crystallographic Evolution of P2 Na2/3Fe0.4Mn0.6O2 Electrodes during Electrochemical Cycling (vol 28, pg 6342, 2016)', CHEMISTRY OF MATERIALS, 28, pp. 8078 - 8078, http://dx.doi.org/10.1021/acs.chemmater.6b04503
,2016, 'Anhydrous Calcium Oxalate Polymorphism: A Combined Computational and Synchrotron X-ray Diffraction Study', Crystal Growth and Design, 16, pp. 5954 - 5965, http://dx.doi.org/10.1021/acs.cgd.6b01005
,2016, 'Characterization of an oxalate-phosphate-amine metal–organic framework (OPA-MOF) exhibiting properties suited for innovative applications in agriculture', Journal of Materials Science, 51, pp. 9239 - 9252, http://dx.doi.org/10.1007/s10853-016-0171-6
,2016, 'Cystallographic Evolution of P2 Na2/3Fe0.4Mn0.6O2 Electrodes during Electrochemical Cycling', Chemistry of Materials, 28, pp. 6342 - 6354, http://dx.doi.org/10.1021/acs.chemmater.6b02714
,2016, 'The Origin of Capacity Fade in the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study', Journal of the American Chemical Society, 138, pp. 8824 - 8833, http://dx.doi.org/10.1021/jacs.6b03932
,2016, 'Comparison of the structural evolution of the O3 and P2 phases of Na2/3Fe2/3Mn1/3O2 during electrochemical cycling', Electrochimica Acta, 203, pp. 189 - 197, http://dx.doi.org/10.1016/j.electacta.2016.04.008
,2016, 'How Crystallographic Evolution of Sodium within Electrodes during Sodium-Ion Battery Function Can be Used to Make Better Electrodes?', ECS Meeting Abstracts, MA2016-03, pp. 1110 - 1110, http://dx.doi.org/10.1149/ma2016-03/2/1110
,2016, 'Investigating New Electrode Materials for Better Sodium-Ion Batteries', ECS Meeting Abstracts, MA2016-03, pp. 1117 - 1117, http://dx.doi.org/10.1149/ma2016-03/2/1117
,2016, 'Ionic Liquids - A Unique Palette to Create Advanced Electrolytes', ECS Meeting Abstracts, MA2016-03, pp. 56 - 56, http://dx.doi.org/10.1149/ma2016-03/1/56
,2016, 'Sodium insertion/extraction from single-walled and multi-walled carbon nanotubes: The differences and similarities', Journal of Power Sources, 314, pp. 102 - 108, http://dx.doi.org/10.1016/j.jpowsour.2016.03.014
,2016, 'High-Performance P2-Phase Na2/3Mn0.8Fe0.1Ti0.1O2 Cathode Material for Ambient-Temperature Sodium-Ion Batteries', Chemistry of Materials, 28, pp. 106 - 116, http://dx.doi.org/10.1021/acs.chemmater.5b03276
,2016, 'Moisture exposed layered oxide electrodes as Na-ion battery cathodes', Journal of Materials Chemistry A, 4, pp. 18963 - 18975, http://dx.doi.org/10.1039/C6TA07950D
,2016, 'Structural evolution of NASICON-type Li1+xAlxGe2-x(PO4)3 using in situ synchrotron X-ray powder diffraction', Journal of Materials Chemistry A, 4, pp. 7718 - 7726, http://dx.doi.org/10.1039/c6ta00402d
,