Select Publications

Preprints

Chatterjee A; Coja-Oghlan A; Greenhill C; Pfenninger V; Rolvien M; Zakharov P; Zampetakis K, 2025, The random $k$-SAT Gibbs uniqueness threshold revisited, http://arxiv.org/abs/2506.01359v1

Greenhill C; Makai T, 2024, Enumeration of dihypergraphs with specified degrees and edge types, http://arxiv.org/abs/2408.12874v1

Delcourt M; Greenhill C; Isaev M; Lidický B; Postle L, 2023, Decomposing random regular graphs into stars, http://arxiv.org/abs/2308.16037v2

Cooper C; Dyer M; Greenhill C, 2023, Triangle processes on graphs with given degree sequence, http://arxiv.org/abs/2301.08499v3

Greenhill C, 2022, Generating graphs randomly, http://arxiv.org/abs/2201.04888v1

Cooper C; Dyer M; Greenhill C, 2020, A triangle process on regular graphs, http://arxiv.org/abs/2012.12972v3

Dyer M; Greenhill C; Kleer P; Ross J; Stougie L, 2020, Sampling hypergraphs with given degrees, http://arxiv.org/abs/2006.12021v2

Greenhill C; Mans B; Pourmiri A, 2020, Balanced Allocation on Hypergraphs, http://arxiv.org/abs/2006.07588v3

Greenhill C; Isaev M; Liang G, 2020, Spanning trees in random regular uniform hypergraphs, http://dx.doi.org/10.1017/S0963548321000158

Gao P; Greenhill C, 2020, Mixing time of the switch Markov chain and stable degree sequences, http://arxiv.org/abs/2003.08497v3

Aldosari HS; Greenhill C, 2019, The average number of spanning hypertrees in sparse uniform hypergraphs, http://arxiv.org/abs/1907.04993v2

Cooper C; Dyer M; Greenhill C, 2019, Triangle-creation processes on cubic graphs

Erdős PL; Greenhill C; Mezei TR; Miklós I; Soltész D; Soukup L, 2019, The mixing time of the switch Markov chains: a unified approach, http://dx.doi.org/10.48550/arxiv.1903.06600

Ayre P; Coja-Oghlan A; Greenhill C, 2018, Lower bounds on the chromatic number of random graphs, http://arxiv.org/abs/1812.09691v4

Dyer M; Greenhill C; Müller H, 2018, Counting independent sets in graphs with bounded bipartite pathwidth, http://arxiv.org/abs/1812.03195v4

Ayre P; Greenhill C, 2018, Rigid colourings of hypergraphs and contiguity, http://arxiv.org/abs/1808.04060v2

Gao P; Greenhill C, 2018, Uniform generation of spanning regular subgraphs of a dense graph, http://arxiv.org/abs/1807.00964v2

Aldosari HS; Greenhill C, 2018, Enumerating sparse uniform hypergraphs with given degree sequence and forbidden edges, http://arxiv.org/abs/1805.04991v4

Chen C; Greenhill C, 2018, Threshold functions for substructures in random subsets of finite vector spaces, http://arxiv.org/abs/1805.03778v3

Greenhill C; Isaev M; McKay BD, 2018, Subgraph counts for dense random graphs with specified degrees, http://dx.doi.org/10.1017/S0963548320000498

Cooper C; Dyer M; Greenhill C; Handley A, 2017, The flip Markov chain for connected regular graphs, http://arxiv.org/abs/1701.03856v2

Altman D; Greenhill C; Isaev M; Ramadurai R, 2016, A threshold result for loose Hamiltonicity in random regular uniform hypergraphs, http://arxiv.org/abs/1611.09423v6

Greenhill C; Isaev M; Kwan M; McKay BD, 2016, The average number of spanning trees in sparse graphs with given degrees, http://arxiv.org/abs/1606.01586v3

Ayre P; Coja-Oghlan A; Greenhill C, 2015, Hypergraph coloring up to condensation, http://arxiv.org/abs/1508.01841v4

Greenhill C, 2014, The switch Markov chain for sampling irregular graphs, http://arxiv.org/abs/1412.5249v1

Blinovsky V; Greenhill C, 2014, Asymptotic enumeration of sparse uniform linear hypergraphs with given degrees, http://arxiv.org/abs/1409.1314v3

Blinovsky V; Greenhill C, 2013, Asymptotic enumeration of sparse uniform hypergraphs with given degrees, http://dx.doi.org/10.48550/arxiv.1306.2012

Cooper C; Dyer M; Greenhill C, 2012, Corrigendum: Sampling regular graphs and a peer-to-peer network, http://arxiv.org/abs/1203.6111v1


Back to profile page