Select Publications
Journal articles
, 2026, 'Selective electrochemical reduction of nitrate-to-ammonia mediated by silver single atoms anchored on defective g-C3N4', Applied Catalysis B Environmental, 382, http://dx.doi.org/10.1016/j.apcatb.2025.125954
, 2025, 'Coupled NOx production and electrochemical conversion processes for sustainable ammonium synthesis from air', Chemical Engineering Journal, 524, http://dx.doi.org/10.1016/j.cej.2025.168996
, 2025, 'Optimizing Bismuth Vanadate Photoanode for Photoelectrochemical Water Splitting Membrane Electrode Assembly Electrolyzers', Energy and Fuels, 39, pp. 18649 - 18659, http://dx.doi.org/10.1021/acs.energyfuels.5c03698
, 2025, 'Enhanced Hydrogen Evolution Reaction in Alkaline Media via Ruthenium–Chromium Atomic Pairs Modified Ruthenium Nanoparticles', Advanced Materials, 37, http://dx.doi.org/10.1002/adma.202419360
, 2025, 'Copper-based electrocatalysts converting carbon dioxide to narrowly distributed products', Chemical Engineering Journal, 517, http://dx.doi.org/10.1016/j.cej.2025.163925
, 2025, 'Solar-driven electrolysis coupled with valuable chemical synthesis', Nature Reviews Clean Technology, 1, pp. 621 - 637, http://dx.doi.org/10.1038/s44359-025-00089-3
, 2025, 'Sono-Piezo-Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions', Advanced Functional Materials, 35, http://dx.doi.org/10.1002/adfm.202425784
, 2025, 'Oxygen-Substituted Porous C2N Frameworks as Efficient Electrocatalysts for Carbon Dioxide Electroreduction', Angewandte Chemie International Edition, 64, http://dx.doi.org/10.1002/anie.202501896
, 2025, 'Oxygen‐Substituted Porous C2N Frameworks as Efficient Electrocatalysts for Carbon Dioxide Electroreduction', Angewandte Chemie, 137, http://dx.doi.org/10.1002/ange.202501896
, 2025, 'Nanoengineered Kesterite Photocathodes: Enhancing Photoelectrochemical Performance for Water Splitting and Beyond', ACS Nano, 19, pp. 17041 - 17061, http://dx.doi.org/10.1021/acsnano.5c01821
, 2025, 'Ferroelectric Polarization-Induced Performance Enhancements in BiFeO3/BiVO4 Photoanodes for Photoelectrochemical Water Splitting', Advanced Functional Materials, 35, http://dx.doi.org/10.1002/adfm.202417651
, 2025, 'Hydrogen-enhanced carrier collection enabling wide-bandgap Cd-free Cu2ZnSnS4 solar cells with 11.4% certified efficiency', Nature Energy, 10, pp. 255 - 265, http://dx.doi.org/10.1038/s41560-024-01694-5
, 2025, 'Impact of Dual Functionalities of Mo-Doped BiFeO3 Decorated with Bi4MoO9 Heteroatoms for Piezo-Photocatalytic Activity', Chemcatchem, 17, http://dx.doi.org/10.1002/cctc.202401005
, 2025, 'Facet Engineering of Cobalt Manganese Oxide for Highly Stable Acidic Oxygen Evolution Reaction', Advanced Energy Materials, 15, http://dx.doi.org/10.1002/aenm.202402786
, 2025, 'Inducing n-type photoanodic behavior in p-type bismuth ferrite via ferroelectric polarization', Journal of Materials Chemistry A, http://dx.doi.org/10.1039/d5ta04859a
, 2025, 'Unassisted Photoelectrochemical Hydrogen Production Coupled with Selective Glucose Oxidation Using Metal Halide Perovskite Photoanodes', Advanced Functional Materials, http://dx.doi.org/10.1002/adfm.202505281
, 2025, 'Differentiating the role of Ni and Fe in NiFeOx co-catalyzed BiVO4 photoanode for water oxidation', Energy and Environmental Sustainability, 1, pp. 100019 - 100019, http://dx.doi.org/10.1016/j.eesus.2025.100019
, 2024, 'Liquid Metal-Enabled Tunable Synthesis of Nanoporous Polycrystalline Copper for Selective CO2-to-Formate Electrochemical Conversion', Small, 20, http://dx.doi.org/10.1002/smll.202403939
, 2024, 'Ferroelectric materials as photoelectrocatalysts: photoelectrode design rationale and strategies', Journal of Materials Chemistry A, 13, pp. 1612 - 1640, http://dx.doi.org/10.1039/d4ta07812h
, 2024, 'Cd-Free High-Bandgap Cu2ZnSnS4 Solar Cell with 10.7% Certified Efficiency Enabled by Engineering Sn-Related Defects', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202407063
, 2024, 'Rationally Designed Carbon-Based Catalysts for Electrochemical C-N Coupling', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202401341
, 2024, 'Surface Engineering on Ag-Decorated Co3O4 Electrocatalysts for Boosting Nitrate Reduction to Ammonia', ACS Catalysis, 14, pp. 11231 - 11242, http://dx.doi.org/10.1021/acscatal.4c01510
, 2024, 'Solar driven ammonia synthesis with Co-TiOx and Ag nanowires enhanced Cu2ZnSnS4 photocathodes', Applied Catalysis B Environmental, 348, http://dx.doi.org/10.1016/j.apcatb.2024.123836
, 2024, 'Cu2(Thiourea)Br2 complex as a multifunctional interfacial layer for reproducible PTAA‐based p‐i‐n perovskite solar cells', Solar RRL, http://dx.doi.org/10.1002/solr.202300920
, 2024, 'Cd-Free Pure Sulfide Kesterite Cu2ZnSnS4 Solar Cell with Over 800 mV Open-Circuit Voltage Enabled by Phase Evolution Intervention', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202307733
, 2024, 'Liquid Metal‐Enabled Tunable Synthesis of Nanoporous Polycrystalline Copper for Selective CO2‐to‐Formate Electrochemical Conversion (Small 49/2024)', Small, 20, http://dx.doi.org/10.1002/smll.202470361
, 2023, 'Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis', ACS Nano, 17, pp. 22227 - 22239, http://dx.doi.org/10.1021/acsnano.3c08450
, 2023, 'Composition-driven morphological evolution of BaTiO3 nanowires for efficient piezocatalytic hydrogen production', Chemosphere, 338, http://dx.doi.org/10.1016/j.chemosphere.2023.139337
, 2023, 'Cu2ZnSnS4 (CZTS) for Photoelectrochemical CO2 Reduction: Efficiency, Selectivity, and Stability', Nanomaterials, 13, http://dx.doi.org/10.3390/nano13202762
, 2023, 'Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive', Nature Photonics, 17, pp. 96 - 105, http://dx.doi.org/10.1038/s41566-022-01111-x
, 2022, '10.3% Efficient Green Cd-Free Cu2ZnSnS4 Solar Cells Enabled by Liquid-Phase Promoted Grain Growth', Small, 18, http://dx.doi.org/10.1002/smll.202204392
, 2022, 'A holistic green system coupling hydrogen production with wastewater valorisation', Ecomat, 4, http://dx.doi.org/10.1002/eom2.12254
, 2022, 'Promoting low-temperature methanol production over mixed oxide supported Cu catalysts: Coupling ceria-promotion and photo-activation', Applied Catalysis B Environmental, 315, http://dx.doi.org/10.1016/j.apcatb.2022.121599
, 2022, 'Photo-electrochemical oxidation herbicides removal in stormwater: Degradation mechanism and pathway investigation', Journal of Hazardous Materials, 436, http://dx.doi.org/10.1016/j.jhazmat.2022.129239
, 2022, 'Engineering a Kesterite-Based Photocathode for Photoelectrochemical Ammonia Synthesis from NOx Reduction', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202201670
, 2022, 'Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO2Reduction toward Valuable Products', ACS Catalysis, 12, pp. 4792 - 4805, http://dx.doi.org/10.1021/acscatal.1c05431
, 2021, 'Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis', Journal of Materials Chemistry A, 9, pp. 20277 - 20319, http://dx.doi.org/10.1039/d1ta05407d
, 2021, 'Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO2 Reduction', Small, 17, http://dx.doi.org/10.1002/smll.202100496
, 2021, 'Correction to: Janus-Structured Co-Ti 3 C 2 MXene Quantum Dots as a Schottky Catalyst for High-Performance Photoelectrochemical Water Oxidation (Advanced Functional Materials, (2020), 30, 19, (2000637), 10.1002/adfm.202000637)', Advanced Functional Materials, 31, http://dx.doi.org/10.1002/adfm.202100955
, 2021, 'Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation', Advanced Materials, 33, http://dx.doi.org/10.1002/adma.202005389
, 2020, 'Enhanced Electrochemical CO2 Reduction of Cu@CuxO Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp3-type Defect', Advanced Functional Materials, 30, http://dx.doi.org/10.1002/adfm.201910118
, 2020, 'Surface Plasmon Resonance Effect Enhanced CsPbBr3 Inverse Opals for High-Performance Inorganic Perovskite Solar Cells', Advanced Materials Interfaces, 7, http://dx.doi.org/10.1002/admi.201901885
, 2020, 'Halogen bonding induced aqueously stable CsPbBr3@MOFs-Derived Co3O4/N-doped-C heterostructure for high-performance photoelectrochemical water oxidation', Applied Catalysis B Environmental, 265, http://dx.doi.org/10.1016/j.apcatb.2019.118583
, 2020, 'Janus-Structured Co-Ti3C2 MXene Quantum Dots as a Schottky Catalyst for High-Performance Photoelectrochemical Water Oxidation', Advanced Functional Materials, 30, http://dx.doi.org/10.1002/adfm.202000637
, 2019, 'Fluorescence resonance energy transfer effect enhanced high performance of Si quantum Dots/CsPbBr3 inverse opal heterostructure perovskite solar cells', Journal of Power Sources, 439, http://dx.doi.org/10.1016/j.jpowsour.2019.227065
, 2018, 'Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-03169-0
, 2018, 'Metal–Organic Framework Derived Narrow Bandgap Cobalt Carbide Sensitized Titanium Dioxide Nanocage for Superior Photo-Electrochemical Water Oxidation Performance', Advanced Functional Materials, 28, http://dx.doi.org/10.1002/adfm.201706154
, 2018, 'A fluorine-modulated bulk-phase heterojunction and tolerance factor for enhanced performance and structure stability of cesium lead halide perovskite solar cells', Journal of Materials Chemistry A, 6, pp. 13263 - 13270, http://dx.doi.org/10.1039/c8ta02899k
, 2017, 'Slow-Photon-Effect-Induced Photoelectrical-Conversion Efficiency Enhancement for Carbon-Quantum-Dot-Sensitized Inorganic CsPbBr3 Inverse Opal Perovskite Solar Cells', Advanced Materials, 29, http://dx.doi.org/10.1002/adma.201703682
, 2017, 'Metal–Organic Framework Derived Co3O4/TiO2/Si Heterostructured Nanorod Array Photoanodes for Efficient Photoelectrochemical Water Oxidation', Advanced Functional Materials, 27, http://dx.doi.org/10.1002/adfm.201701102