ORCID as entered in ROS

Select Publications
2018, 'Corrigendum to “Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+ Al3+ doped M-type BaSr hexaferrites synthesized by a ceramic method” [J. Alloys Compd. 695 (2017) 1112–1121](S0925838816333722)(10.1016/j.jallcom.2016.10.237)', Journal of Alloys and Compounds, 734, pp. 343, http://dx.doi.org/10.1016/j.jallcom.2017.11.003
,2018, 'Crystal chemistry and single-phase synthesis of Gd3+ substituted Co-Zn ferrite nanoparticles for enhanced magnetic properties', RSC Advances, 8, pp. 25258 - 25267, http://dx.doi.org/10.1039/c8ra04282a
,2018, 'High temperature dielectric studies of indium-substituted NiCuZn nanoferrites', Journal of Physics and Chemistry of Solids, 112, pp. 29 - 36, http://dx.doi.org/10.1016/j.jpcs.2017.08.022
,2018, 'Synthesis and Characterization of Cu–Mn Substituted SrFe12O19 Hexaferrites', Journal of Inorganic and Organometallic Polymers and Materials, 28, pp. 212 - 222, http://dx.doi.org/10.1007/s10904-017-0691-9
,2017, 'Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites', Ceramics International, 43, pp. 15486 - 15492, http://dx.doi.org/10.1016/j.ceramint.2017.08.096
,2017, 'Auto-ignition synthesis of CoFe2O4 with Al3+ substitution for high frequency applications', Ceramics International, 43, pp. 14347 - 14353, http://dx.doi.org/10.1016/j.ceramint.2017.07.191
,2017, 'Magnetic Properties and Cation Distribution of Bimetallic (Mn–Co) Doped NiFe2O4 Nanoparticles', Journal of Inorganic and Organometallic Polymers and Materials, 27, pp. 1893 - 1900, http://dx.doi.org/10.1007/s10904-017-0659-9
,2017, 'Magnetic Properties of FeMnyCoyFe2−2yO4@Oleylamine Nanocomposite with Cation Distribution', Journal of Inorganic and Organometallic Polymers and Materials, 27, pp. 1740 - 1749, http://dx.doi.org/10.1007/s10904-017-0637-2
,2017, 'Structural phases, magnetic properties and Maxwell-Wagner type relaxation of CoFe2O4/Sr2Co2Fe12O22 ferrite composites', Materials Research Express, 4, http://dx.doi.org/10.1088/2053-1591/aa7699
,2017, 'Synthesis and Structural and Magnetic Characterization of BaZnxFe12−xO19 Hexaferrite: Hyperfine Interactions', Journal of Superconductivity and Novel Magnetism, 30, pp. 1585 - 1592, http://dx.doi.org/10.1007/s10948-016-3958-4
,2017, 'The structural and magnetic properties of dual phase cobalt ferrite', SCIENTIFIC REPORTS, 7, http://dx.doi.org/10.1038/s41598-017-02784-z
,2017, 'Magnetic properties and hyperfine interactions of Co1-2xNixMnxFe2O4 nanoparticles', Ceramics International, 43, pp. 4746 - 4752, http://dx.doi.org/10.1016/j.ceramint.2016.11.106
,2017, 'Inter-atomic bonding and dielectric polarization in Gd3+ incorporated Co-Zn ferrite nanoparticles', PHYSICA B-CONDENSED MATTER, 510, pp. 74 - 79, http://dx.doi.org/10.1016/j.physb.2017.01.011
,2017, 'Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+[sbnd]Al3+doped M-type Ba[sbnd]Sr hexaferrites synthesized by a ceramic method', Journal of Alloys and Compounds, 695, pp. 1112 - 1121, http://dx.doi.org/10.1016/j.jallcom.2016.10.237
,2016, 'Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co-Zn ferrites synthesized by sol-gel method', Ceramics International, 42, pp. 16096 - 16102, http://dx.doi.org/10.1016/j.ceramint.2016.07.122
,2016, 'Role of Coupling Divalent and Tetravalent Metal Ions on the Elastic and Electric Properties of CoFe2O4 Ferrites Prepared by Sol–Gel Method', Journal of Superconductivity and Novel Magnetism, 29, pp. 2635 - 2640, http://dx.doi.org/10.1007/s10948-016-3585-0
,2016, 'Effect of bimetallic (Ni and Co) substitution on magnetic properties of MnFe2O4 nanoparticles', Ceramics International, 42, pp. 13773 - 13782, http://dx.doi.org/10.1016/j.ceramint.2016.05.177
,2016, 'The Effect of Cr3+ Substitution on Magnetic Properties of CoFe2O4 Nanoparticles Synthesized by Microwave Combustion Route', Journal of Superconductivity and Novel Magnetism, 29, pp. 2395 - 2400, http://dx.doi.org/10.1007/s10948-016-3533-z
,2016, 'Control of the spatial distribution and crystal orientation of self-organized Au nanoparticles', Nanotechnology, 27, http://dx.doi.org/10.1088/0957-4484/27/38/385605
,2016, 'Structural, magneto-optical properties and cation distribution of SrBixLaxYxFe12-3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites', Materials Research Bulletin, 80, pp. 263 - 272, http://dx.doi.org/10.1016/j.materresbull.2016.03.028
,2016, 'Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film', Scientific Reports, 6, pp. 30074, http://dx.doi.org/10.1038/srep30074
,2016, 'Pr3+ doped CoFe2O4: A highly efficient, magnetically recoverable and reusable catalyst for one-pot four-component synthesis of multisubstituted pyrroles', IRANIAN JOURNAL OF CATALYSIS, 6, pp. 333 - 338, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000390998000004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2016, 'Dielectric properties, cationic distribution calculation and hyperfine interactions of La3+ and Bi3+ doped strontium hexaferrites', Ceramics International, 42, pp. 9100 - 9115, http://dx.doi.org/10.1016/j.ceramint.2016.02.175
,2016, 'Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite', Ceramics International, 42, pp. 8627 - 8635, http://dx.doi.org/10.1016/j.ceramint.2016.02.094
,2016, 'Influence of Gd3+ ion substitution on the MnCrFeO4 for their nanoparticle shape formation and magnetic properties', Journal of Alloys and Compounds, 657, pp. 487 - 494, http://dx.doi.org/10.1016/j.jallcom.2015.10.164
,2016, 'Structural phases and Maxwell-Wagner relaxation in magnetically soft-ZnFe2O4 and hard-Sr2Cu2Fe12O22 nanocomposites', Ceramics International, 42, pp. 2289 - 2298, http://dx.doi.org/10.1016/j.ceramint.2015.10.023
,2016, 'Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19', Journal of Magnetism and Magnetic Materials, 398, pp. 32 - 37, http://dx.doi.org/10.1016/j.jmmm.2015.09.002
,2016, 'Spin glass behavior and enhanced but frustrated magnetization in Ho3+ substituted Co-Zn ferrite interacting nanoparticles', Rsc Advances, 6, pp. 76590 - 76599, http://dx.doi.org/10.1039/c6ra12541g
,2016, 'Structural investigation and hyperfine interactions of BaBixLaxFe12−2xO19 (0.0≤x≤0.5) hexaferrites', Ceramics International, 42, pp. 3380 - 3387, http://dx.doi.org/10.1016/j.ceramint.2015.10.132
,2016, 'Synthesis and characterization of oleylamine capped MnxFe1-xFe2O4nanocomposite: Magneto-optical properties, cation distribution and hyperfine interactions', Journal of Alloys and Compounds, 688, pp. 675 - 686, http://dx.doi.org/10.1016/j.jallcom.2016.07.033
,2016, 'WITHDRAWN: Effect of annealing temperature on structural, magnetic, elastic and dielectric properties of Ni–Cu–Zn nano ferrites', Results in Physics, http://dx.doi.org/10.1016/j.rinp.2016.04.005
,2015, 'Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles', Superlattices and Microstructures, 88, pp. 450 - 466, http://dx.doi.org/10.1016/j.spmi.2015.10.005
,2015, 'Random site occupancy induced disordered Néel-type collinear spin alignment in heterovalent Zn2+-Ti4+ ion substituted CoFe2O4', Rsc Advances, 5, pp. 91482 - 91492, http://dx.doi.org/10.1039/c5ra21522f
,2015, 'Mössbauer spectroscopic analysis and temperature dependent electrical study of Mg0.9Mn0.1GdyFe2-yO4 nanoferrites', Journal of Magnetism and Magnetic Materials, 390, pp. 50 - 55, http://dx.doi.org/10.1016/j.jmmm.2015.04.096
,2015, 'Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization', Journal of Alloys and Compounds, 642, pp. 70 - 77, http://dx.doi.org/10.1016/j.jallcom.2015.04.085
,2015, 'Polyol synthesis of Mn3+ substituted Fe3O4 nanoparticles: Cation distribution, structural and electrical properties', Superlattices and Microstructures, 85, pp. 747 - 760, http://dx.doi.org/10.1016/j.spmi.2015.07.001
,2015, 'Effect of la3+ impurity on magnetic and electrical properties of Co-Cu-Cr-Fe nanoparticles', Journal of Nanoscience and Nanotechnology, 15, pp. 4268 - 4275, http://dx.doi.org/10.1166/jnn.2015.9591
,2015, 'Superparamagnetic behavior of indium substituted NiCuZn nano ferrites', Journal of Magnetism and Magnetic Materials, 381, pp. 416 - 421, http://dx.doi.org/10.1016/j.jmmm.2015.01.021
,2015, 'Superparamagnetic behavior of indium substituted NiCuZn nano ferrites', JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 381, pp. 416 - 421, http://dx.doi.org/10.1016/j.jmmm.2015.01.021
,2015, 'Ce3+ incorporated structural and magnetic properties of M type barium hexaferrites', Journal of Magnetism and Magnetic Materials, 378, pp. 59 - 63, http://dx.doi.org/10.1016/j.jmmm.2014.10.166
,2015, 'Superparamagnetic behaviour and evidence of weakening in super-exchange interactions with the substitution of Gd3+ ions in the Mg-Mn nanoferrite matrix', Materials Research Bulletin, 63, pp. 216 - 225, http://dx.doi.org/10.1016/j.materresbull.2014.12.009
,2014, 'Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+ doped CoFe2O 4 nanoparticles', Journal of Alloys and Compounds, 604, pp. 204 - 210, http://dx.doi.org/10.1016/j.jallcom.2014.03.141
,2014, 'Study of structural, electrical and magnetic properties of Cr doped Ni-Mg ferrite nanoparticle', Journal of Alloys and Compounds, 602, pp. 150 - 156, http://dx.doi.org/10.1016/j.jallcom.2014.03.013
,2014, 'Exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0.5Zn0.5-xCo xFe2O4 nanocrystalline ferrite', Journal of Magnetism and Magnetic Materials, 360, pp. 21 - 33, http://dx.doi.org/10.1016/j.jmmm.2014.01.047
,2014, 'Synthesis and structural, magnetic characterization of nanocrystalline Zn1-xMnxO diluted magnetic semiconductors (DMSs) synthesized by combustion reaction', Ceramics International, 40, pp. 6553 - 6559, http://dx.doi.org/10.1016/j.ceramint.2013.11.108
,2014, 'Phase evaluation of Li+ substituted CoFe2O 4 nanoparticles, their characterizations and magnetic properties', Journal of Magnetism and Magnetic Materials, 355, pp. 70 - 75, http://dx.doi.org/10.1016/j.jmmm.2013.11.054
,2014, 'Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2-xO4 nanoparticles', Chemical Physics, 429, pp. 20 - 26, http://dx.doi.org/10.1016/j.chemphys.2013.11.018
,2014, 'Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+-Mn2+-Fe3+-O2- ferromagnetic nanoparticles', Physical Chemistry Chemical Physics, 16, pp. 2347 - 2357, http://dx.doi.org/10.1039/c3cp54257b
,2014, 'Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys', Journal of Nanoscience and Nanotechnology, 14, pp. 4101 - 4107, http://dx.doi.org/10.1166/jnn.2014.8230
,2014, 'Combustion synthesis of Co2+ substituted Li0.5Cr0.5Fe2O4 nano-powder: Physical and magnetic interactions', Powder Technology, 259, pp. 14 - 21, http://dx.doi.org/10.1016/j.powtec.2014.03.053
,