ORCID as entered in ROS

Select Publications
2023, 'Bayesian optimisation for efficient material discovery: a mini review', Nanoscale, 15, pp. 10975 - 10984, http://dx.doi.org/10.1039/d2nr07147a
,2023, 'Rapid Synthesis of Ultrathin Ni:FeOOH with In Situ-Induced Oxygen Vacancies for Enhanced Water Oxidation Activity and Stability of BiVO4 Photoanodes', ACS Applied Materials and Interfaces, 15, pp. 21123 - 21133, http://dx.doi.org/10.1021/acsami.3c01877
,2023, 'Angstrom‐confined Electrochemical Synthesis of Sub‐unit Cell non van der Waals 2D Metal Oxides', Advanced Materials, 35, pp. e2301506, http://dx.doi.org/10.1002/adma.202301506
,2023, 'Vacancy Promotion in Layered Double Hydroxide Electrocatalysts for Improved Oxygen Evolution Reaction Performance', ACS Catalysis, 13, pp. 4799 - 4810, http://dx.doi.org/10.1021/acscatal.2c05863
,2023, 'Bifunctional and regenerable molecular electrode for water electrolysis at neutral pH', Journal of Materials Chemistry A, 11, pp. 13331 - 13340, http://dx.doi.org/10.1039/d3ta00071k
,2023, 'Oxygen Vacancies Engineering in Thick Semiconductor Films via Deep Ultraviolet Photoactivation for Selective and Sensitive Gas Sensing', Advanced Electronic Materials, 9, http://dx.doi.org/10.1002/aelm.202200905
,2023, 'Differentiating the Impacts of Cu2O Initial Low- and High-Index Facets on Their Reconstruction and Catalytic Performance in Electrochemical CO2 Reduction Reaction', Advanced Functional Materials, 33, http://dx.doi.org/10.1002/adfm.202210938
,2023, 'Atomically Dispersed Cu Catalysts on Sulfide-Derived Defective Ag Nanowires for Electrochemical CO2 Reduction', ACS Nano, 17, pp. 2387 - 2398, http://dx.doi.org/10.1021/acsnano.2c09473
,2023, 'Altering Oxygen Binding by Redox-Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System**', Angewandte Chemie International Edition, 62, http://dx.doi.org/10.1002/anie.202217186
,2023, 'Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System**', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202217186
,2023, 'Innentitelbild: Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System (Angew. Chem. 8/2023)', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202300564
,2023, 'Inside Cover: Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System (Angew. Chem. Int. Ed. 8/2023)', Angewandte Chemie International Edition, 62, http://dx.doi.org/10.1002/anie.202300564
,2023, 'Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability', Angewandte Chemie International Edition, 62, http://dx.doi.org/10.1002/anie.202210828
,2023, 'Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202210828
,2023, 'Identification of catalytic activity descriptors for selective 5-hydroxymethyl furfural electrooxidation to 2,5-furandicarboxylic acid', Journal of Materials Chemistry A, 11, pp. 5527 - 5539, http://dx.doi.org/10.1039/d2ta08306j
,2023, 'Low temperature mechano-catalytic biofuel conversion using liquid metals', Chemical Engineering Journal, 452, http://dx.doi.org/10.1016/j.cej.2022.139350
,2023, 'Targeted leveling of the undercoordinated high field density sites renders effective zinc dendrite inhibition', Energy Storage Materials, 55, pp. 117 - 129, http://dx.doi.org/10.1016/j.ensm.2022.11.033
,2023, 'Defect‐Promoted Ni‐Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation (Adv. Mater. 48/2023)', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202370349
,2023, 'Differentiating the Impacts of Cu2O Initial Low‐ and High‐Index Facets on Their Reconstruction and Catalytic Performance in Electrochemical CO2 Reduction Reaction (Adv. Funct. Mater. 12/2023)', Advanced Functional Materials, 33, http://dx.doi.org/10.1002/adfm.202370071
,2022, 'Uncovering the CO2Capture Mechanism of NaNO3-Promoted MgO by 18O Isotope Labeling', Jacs Au, 2, pp. 2731 - 2741, http://dx.doi.org/10.1021/jacsau.2c00461
,2022, 'Interface-Controlled Phase Separation of Liquid Metal-Based Eutectic Ternary Alloys', Chemistry of Materials, 34, pp. 10761 - 10771, http://dx.doi.org/10.1021/acs.chemmater.2c02981
,2022, 'Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis', Nature Communications, 13, http://dx.doi.org/10.1038/s41467-022-30155-4
,2022, 'Understanding water transport through graphene-based nanochannels via experimental control of slip length', Nature Communications, 13, http://dx.doi.org/10.1038/s41467-022-33456-w
,2022, 'Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2', Applied Catalysis B Environmental, 316, http://dx.doi.org/10.1016/j.apcatb.2022.121618
,2022, 'Promoting low-temperature methanol production over mixed oxide supported Cu catalysts: Coupling ceria-promotion and photo-activation', Applied Catalysis B Environmental, 315, http://dx.doi.org/10.1016/j.apcatb.2022.121599
,2022, 'Pt Single Atom Electrocatalysts at Graphene Edges for Efficient Alkaline Hydrogen Evolution', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202203067
,2022, 'Liquid metal-based electrosynthesis of stratified zinc-organic frameworks', Journal of Materials Chemistry C, 10, pp. 14963 - 14970, http://dx.doi.org/10.1039/d2tc01973f
,2022, 'Low-temperature liquid platinum catalyst', Nature Chemistry, 14, pp. 935 - 941, http://dx.doi.org/10.1038/s41557-022-00965-6
,2022, 'Tuning the Coordination Structure of Cu-N-C Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO2 and NO3– to Urea', Advanced Energy Materials, 12, http://dx.doi.org/10.1002/aenm.202201500
,2022, 'Insights into the Interfacial Contact and Charge Transport of Gas-Sensing Liquid Metal Marbles', ACS Applied Materials and Interfaces, 14, pp. 30112 - 30123, http://dx.doi.org/10.1021/acsami.2c06908
,2022, 'Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity', Journal of the American Chemical Society, 144, pp. 11094 - 11098, http://dx.doi.org/10.1021/jacs.2c04911
,2022, 'Low Temperature Nano Mechano-electrocatalytic CH4Conversion', ACS Nano, 16, pp. 8684 - 8693, http://dx.doi.org/10.1021/acsnano.2c02326
,2022, 'Mass Transport via In-Plane Nanopores in Graphene Oxide Membranes', Nano Letters, 22, pp. 4941 - 4948, http://dx.doi.org/10.1021/acs.nanolett.2c01615
,2022, 'Long-Life Zn Anode Enabled by Low Volume Concentration of a Benign Electrolyte Additive', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202200606
,2022, 'Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO2Reduction toward Valuable Products', ACS Catalysis, 12, pp. 4792 - 4805, http://dx.doi.org/10.1021/acscatal.1c05431
,2022, 'Impurity Tolerance of Unsaturated Ni-N-C Active Sites for Practical Electrochemical CO
2022, 'Gallium-Based Liquid Metal Reaction Media for Interfacial Precipitation of Bismuth Nanomaterials with Controlled Phases and Morphologies', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202108673
,2022, 'Ceria Nanoparticles as an Unexpected Catalyst to Generate Nitric Oxide from S-Nitrosoglutathione', Small, 18, pp. 2105762 - 2105762, http://dx.doi.org/10.1002/smll.202105762
,2022, 'Engineering Multidefects on Cex Si1−x O2−δ Nanocomposites for the Catalytic Ozonation Reaction', Small, 18, pp. e2103530, http://dx.doi.org/10.1002/smll.202103530
,2021, 'Surface reconstruction enabled efficient hydrogen generation on a cobalt-iron phosphate electrocatalyst in neutral water', ACS Applied Materials and Interfaces, 13, pp. 53798 - 53809, http://dx.doi.org/10.1021/acsami.1c14588
,2021, 'Synergistic Cyanamide Functionalization and Charge-Induced Activation of Nickel/Carbon Nitride for Enhanced Selective Photoreforming of Ethanol', ACS Applied Materials and Interfaces, 13, pp. 49916 - 49926, http://dx.doi.org/10.1021/acsami.1c14195
,2021, 'Photoenhanced CO2 methanation over La2O3 promoted Co/TiO2 catalysts', Applied Catalysis B Environmental, 294, http://dx.doi.org/10.1016/j.apcatb.2021.120248
,2021, 'Erratum: Mechanistic Aspects of the Functionalization of Graphene Oxide with Ethylene Diamine: Implications for Energy Storage Applications (ACS Appl. Nano Mater. (2021) 4:3 (3232-3240) DOI: 10.1021/acsanm.1c00412)', ACS Applied Nano Materials, 4, pp. 8637 - 8640, http://dx.doi.org/10.1021/acsanm.1c01645
,2021, 'Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity', Materials Today
,2021, 'Nitrate reduction to ammonium: From CuO defect engineering to waste NOx-to-NH3 economic feasibility', Energy and Environmental Science, 14, pp. 3588 - 3598, http://dx.doi.org/10.1039/d1ee00594d
,2021, 'Doping-mediated metal−support interaction promotion toward light-assisted methanol production over Cu/ZnO/Al2O3', ACS Catalysis, 11, pp. 5818 - 5828, http://dx.doi.org/10.1021/acscatal.1c00332
,2021, 'Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction', Advanced Energy Materials, 11, http://dx.doi.org/10.1002/aenm.202100303
,2021, 'Mechanistic Aspects of the Functionalization of Graphene Oxide with Ethylene Diamine: Implications for Energy Storage Applications', ACS Applied Nano Materials, 4, pp. 3232 - 3240, http://dx.doi.org/10.1021/acsanm.1c00412
,2021, 'Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals', Journal of the American Chemical Society, 143, pp. 2037 - 2048, http://dx.doi.org/10.1021/jacs.0c12185
,2021, 'Colloidal Ni2P Nanocrystals Encapsulated in Heteroatom-Doped Graphene Nanosheets: A Synergy of 0D@2D Heterostructure Toward Overall Water Splitting', Chemistry of Materials, 33, pp. 234 - 245, http://dx.doi.org/10.1021/acs.chemmater.0c03543
,