ORCID as entered in ROS

Select Publications
2025, 'Advancing the photoelectric performance of tube PECVD-based tunnel oxide passivating contact silicon solar cells by regulating the activated phosphorus concentration in polysilicon', Solar Energy Materials and Solar Cells, 290, http://dx.doi.org/10.1016/j.solmat.2025.113696
,2025, 'Silver-lean screen-printing metallisation for industrial TOPCon solar cells: Enabling an 80 % reduction in silver consumption', Solar Energy Materials and Solar Cells, 288, http://dx.doi.org/10.1016/j.solmat.2025.113654
,2025, 'Integration of aluminum contacts in TOPCon solar cells: A pathway to reduce silver usage', Solar Energy Materials and Solar Cells, 285, http://dx.doi.org/10.1016/j.solmat.2025.113559
,2025, 'Temperature dependency of the optical properties of photovoltaic module component layers', Solar Energy Materials and Solar Cells, 282, http://dx.doi.org/10.1016/j.solmat.2024.113389
,2025, 'Multifunctional coatings for solar module glass', Progress in Photovoltaics Research and Applications, 33, pp. 200 - 208, http://dx.doi.org/10.1002/pip.3805
,2024, 'Automatically Generated Datasets: Present and Potential Self-Cleaning Coating Materials', Scientific Data, 11, http://dx.doi.org/10.1038/s41597-024-02983-0
,2024, 'Low-temperature fabrication of boron-doped amorphous silicon passivating contact as a local selective emitter for high-efficiency n-type TOPCon solar cells', Nano Energy, 125, http://dx.doi.org/10.1016/j.nanoen.2024.109556
,2024, 'Mitigating parasitic absorption in Poly-Si contacts for TOPCon solar cells: A comprehensive review', Solar Energy Materials and Solar Cells, 267, http://dx.doi.org/10.1016/j.solmat.2024.112704
,2024, 'Cd-Free Pure Sulfide Kesterite Cu2ZnSnS4 Solar Cell with Over 800 mV Open-Circuit Voltage Enabled by Phase Evolution Intervention', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202307733
,2024, 'Revisiting Photovoltaic Module Antireflection Coatings: A Novel, Dense Sol–Gel Design to Address Long-Standing Durability Limitations', Progress in Photovoltaics Research and Applications, http://dx.doi.org/10.1002/pip.3877
,2023, 'Strategies for minimizing induced thermomechanical stress in glass–glass PV modules with half cells identified using finite element modelling', Solar Energy, 255, pp. 60 - 70, http://dx.doi.org/10.1016/j.solener.2023.03.020
,2023, 'Use finite element modelling to characterise the stress evolution in Multi Busbar interconnected half-cell tiled modules after soldering and lamination', Solar Energy Materials and Solar Cells, 252, pp. 112166, http://dx.doi.org/10.1016/j.solmat.2022.112166
,2023, 'Comparative durability study of commercial inner-pore antireflection coatings and alternative dense coatings', Solar Energy Materials and Solar Cells, 251, http://dx.doi.org/10.1016/j.solmat.2022.112122
,2021, 'Synergetic Optimization of Electrical and Thermal Transport Properties by Cu Vacancies and Nanopores in Cu2Se.', ACS Appl Mater Interfaces, 13, pp. 58936 - 58948, http://dx.doi.org/10.1021/acsami.1c18818
,2021, 'Modelling picosecond and nanosecond laser ablation for prediction of induced damage on textured SiNx/Si surfaces of Si solar cells', Progress in Photovoltaics Research and Applications, 29, pp. 1020 - 1033, http://dx.doi.org/10.1002/pip.3425
,2021, 'Kinetics studies of thin film amorphous titanium niobium oxides for lithium ion battery anodes', Electrochimica Acta, 388, http://dx.doi.org/10.1016/j.electacta.2021.138544
,2020, 'Balanced contact method: Reduction of thermomechanical stress in silicon solar cells induced by interconnection', Solar Energy Materials and Solar Cells, 215, pp. 110667, http://dx.doi.org/10.1016/j.solmat.2020.110667
,2020, 'Fabrication strategies for high-rate TiO
2020, 'Epitaxial growth of Cu2ZnSnS4 thin film on Si by radio frequency magnetron sputtering', Applied Physics Letters, 116, http://dx.doi.org/10.1063/1.5136289
,2020, 'Reduced Silicon Fragmentation in Lithium Ion Battery Anodes Using Electronic Doping Strategies', ACS Applied Energy Materials, 3, pp. 1730 - 1741, http://dx.doi.org/10.1021/acsaem.9b02200
,2020, 'High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids (vol 6, pg E2, 2019)', MRS ENERGY & SUSTAINABILITY, 7, http://dx.doi.org/10.1557/mre.2020.15
,2019, 'Ambient-Temperature Waterborne Polymer/rGO Nanocomposite Films: Effect of rGO Distribution on Electrical Conductivity', ACS Applied Materials and Interfaces, 11, pp. 48450 - 48458, http://dx.doi.org/10.1021/acsami.9b19183
,2019, 'High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids', MRS Energy and Sustainability, 6, pp. 4, http://dx.doi.org/10.1557/mre.2019.4
,2019, 'Hybrid solar energy harvesting and storage devices: The promises and challenges', Materials Today Energy, 13, pp. 22 - 44, http://dx.doi.org/10.1016/j.mtener.2019.04.003
,2018, 'Evidence for Fast Lithium-Ion Diffusion and Charge-Transfer Reactions in Amorphous TiO x Nanotubes: Insights for High-Rate Electrochemical Energy Storage', ACS Applied Materials and Interfaces, 10, pp. 42513 - 42523, http://dx.doi.org/10.1021/acsami.8b16994
,2018, 'Study of sputtered Cu 2 ZnSnS 4 thin films on Si', Applied Surface Science, 459, pp. 700 - 706, http://dx.doi.org/10.1016/j.apsusc.2018.07.192
,2018, 'Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates', Solar Energy Materials and Solar Cells, 182, pp. 14 - 20, http://dx.doi.org/10.1016/j.solmat.2018.02.036
,2018, '266-nm ps laser ablation for copper-plated p-type selective emitter perc silicon solar cells', IEEE Journal of Photovoltaics, 8, pp. 952 - 959, http://dx.doi.org/10.1109/JPHOTOV.2018.2834629
,2018, 'Metallization method for interdigitated back-contact silicon solar cells employing an insulating resin layer and a Ti/Ag/Cu metal Stack', IEEE Journal of Photovoltaics, 8, pp. 916 - 922, http://dx.doi.org/10.1109/JPHOTOV.2018.2825465
,2018, 'Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping', Nano Energy, 46, pp. 212 - 219, http://dx.doi.org/10.1016/j.nanoen.2018.01.047
,2018, 'Potential for improved transport in core-shell CuInS2 nanoparticle solar cells from an Ag surface termination', Crystengcomm, 20, pp. 3381 - 3387, http://dx.doi.org/10.1039/c8ce00728d
,2017, 'Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells', Applied Surface Science, 423, pp. 139 - 146, http://dx.doi.org/10.1016/j.apsusc.2017.06.011
,2017, 'Diode laser annealing on sputtered epitaxial Cu2ZnSnS4 thin films', Physica Status Solidi Rapid Research Letters, 11, http://dx.doi.org/10.1002/pssr.201700033
,2016, 'Copper microstructure evolution in light-induced plated metal grids for silicon solar cells: Implications for reliable metallization', Journal of the Electrochemical Society, 163, pp. H1136 - H1143, http://dx.doi.org/10.1149/2.0441614jes
,2016, 'Post-plating Annealing of Light Induced Plated Copper Fingers: Implications for Reliable Metallization', Energy Procedia, 98, pp. 136 - 141, http://dx.doi.org/10.1016/j.egypro.2017.03.1299
,2016, 'Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers', Solar Energy Materials and Solar Cells, 144, pp. 700 - 706, http://dx.doi.org/10.1016/j.solmat.2015.10.019
,2015, 'Improvement of Jsc in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface', ACS Applied Materials and Interfaces, 7, pp. 22868 - 22873, http://dx.doi.org/10.1021/acsami.5b05652
,2015, 'Kesterite Cu2ZnSnS4 thin film solar cells by a facile DMF-based solution coating process', Journal of Materials Chemistry C, 3, pp. 10783 - 10792, http://dx.doi.org/10.1039/c5tc01750e
,2015, 'Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol–Gel and Selenization Process', ACS Applied Materials & Interfaces, pp. null - null, http://dx.doi.org/10.1021/acsami.5b01151
,2015, 'Epitaxial Cu2ZnSnS4 thin film on Si (111) 4° substrate', Applied Physics Letters, 106, http://dx.doi.org/10.1063/1.4922992
,2015, 'Rapid thermal annealed Molybdenum back contact for Cu2ZnSnS4 thin film solar cells', Applied Physics Letters, 106, http://dx.doi.org/10.1063/1.4916994
,2015, 'Optimization of precursor deposition for evaporated Cu2ZnSnS4 solar cells', Applied Physics A Materials Science and Processing, 118, pp. 893 - 899, http://dx.doi.org/10.1007/s00339-014-8806-4
,2015, 'Exploring the application of metastable wurtzite nanocrystals in pure-sulfide Cu2ZnSnS4 solar cells by forming nearly micron-sized large grains', Journal of Materials Chemistry A, http://dx.doi.org/10.1039/C5TA05813A
,2015, 'Radio frequency magnetron sputtered highly textured Cu2ZnSnS4 thin films on sapphire (0001) substrates', Journal of Alloys and Compounds, 632, pp. 53 - 58, http://dx.doi.org/10.1016/j.jallcom.2015.01.192
,2014, 'Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact', Physica Status Solidi Rapid Research Letters, 8, pp. 966 - 970, http://dx.doi.org/10.1002/pssr.201409052
,2014, 'Impact of rapid thermal annealing of Mo coated soda lime glass substrate on device performance of evaporated Cu2ZnSnS4 thin film solar cells', Materials Letters, 125, pp. 40 - 43, http://dx.doi.org/10.1016/j.matlet.2014.03.122
,2014, 'Heteroepitaxial growth of Cu2ZnSnS4 thin film on sapphire substrate by radio frequency magnetron sputtering', Applied Physics Letters, 104, pp. 092103, http://dx.doi.org/10.1063/1.4867093
,2014, 'Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact', Applied Physics Letters, 104, pp. 041115 - 041115-4, http://dx.doi.org/10.1063/1.4863951
,2014, 'Radio frequency magnetron sputtered epitaxial Cu2ZnSnS4 thin film on ZnS(100)', Physica Status Solidi Rapid Research Letters, 8, pp. 404 - 407, http://dx.doi.org/10.1002/pssr.201409169
,2014, 'Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4', Applied Physics Letters, 104, pp. - - -, http://dx.doi.org/10.1063/1.4873715
,