ORCID as entered in ROS

Select Publications
2025, 'Comparative genomic analysis of Salmonella enterica serovar Typhimurium isolates from the chicken production chain and table egg livestock in New South Wales, Australia', Food Microbiology, 132, http://dx.doi.org/10.1016/j.fm.2025.104855
,2024, 'Deciphering Bordetella pertussis epidemiology through culture-independent multiplex amplicon and metagenomic sequencing', Journal of Clinical Microbiology, 62, http://dx.doi.org/10.1128/jcm.01178-24
,2024, 'Genomic evidence of two-staged transmission of the early seventh cholera pandemic', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52800-w
,2024, 'A Multilocus Sequence Typing Scheme for Rapid Identification of Xanthomonas citri Based on Whole-Genome Sequencing Data', Phytopathology, 114, pp. 1480 - 1489, http://dx.doi.org/10.1094/PHYTO-12-23-0490-R
,2024, 'DODGE: automated point source bacterial outbreak detection using cumulative long term genomic surveillance', Bioinformatics, 40, http://dx.doi.org/10.1093/bioinformatics/btae427
,2024, 'Emergence of Poultry-Associated Human Salmonella enterica Serovar Abortusovis Infections, New South Wales, Australia', Emerging Infectious Diseases, 30, pp. 691 - 700, http://dx.doi.org/10.3201/eid3004.230958
,2024, 'Uncovering the boundaries of Campylobacter species through large-scale phylogenetic and nucleotide identity analyses', Msystems, 9, http://dx.doi.org/10.1128/msystems.01218-23
,2024, 'Genomic diversity of Salmonella enterica serovar Typhimurium isolated from chicken processing facilities in New South Wales, Australia', Frontiers in Microbiology, 15, http://dx.doi.org/10.3389/fmicb.2024.1440777
,2024, 'SaLTy: a novel Staphylococcus aureus Lineage Typer', Microbial Genomics, 10, http://dx.doi.org/10.1099/mgen.0.001250
,2023, 'Emergence and genomic insights of non-pandemic O1 Vibrio cholerae in Zhejiang, China', Microbiology Spectrum, 11, http://dx.doi.org/10.1128/spectrum.02615-23
,2023, 'Genomic Epidemiology and Multilevel Genome Typing of Australian Salmonella enterica Serovar Enteritidis', Microbiology Spectrum, 11, http://dx.doi.org/10.1128/spectrum.03014-22
,2023, 'Genomic epidemiology and multilevel genome typing of Bordetella pertussis', Emerging Microbes and Infections, 12, http://dx.doi.org/10.1080/22221751.2023.2239945
,2022, 'Genomic Epidemiology of Vibrio cholerae O139, Zhejiang Province, China, 1994–2018', Emerging Infectious Diseases, 28, pp. 2253 - 2260, http://dx.doi.org/10.3201/eid2811.212066
,2022, 'Improved Genomic Identification, Clustering, and Serotyping of Shiga Toxin-Producing Escherichia coli Using Cluster/Serotype-Specific Gene Markers', Frontiers in Cellular and Infection Microbiology, 11, pp. 772574, http://dx.doi.org/10.3389/fcimb.2021.772574
,2022, 'MGTdb: A web service and database for studying the global and local genomic epidemiology of bacterial pathogens', Database, 2022, http://dx.doi.org/10.1093/database/baac094
,2021, 'Cluster-specific gene markers enhance Shigella and Enteroinvasive Escherichia coli in silico serotyping', Microbial Genomics, 7, pp. 000704, http://dx.doi.org/10.1099/mgen.0.000704
,2021, 'Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance', Microbial Genomics, 7, pp. 000710, http://dx.doi.org/10.1099/mgen.0.000710
,2021, 'Development and comparison of novel multiple cross displacement amplification (MCDA) assays with other nucleic acid amplification methods for SARS-CoV-2 detection', Scientific Reports, 11, pp. 1873, http://dx.doi.org/10.1038/s41598-021-81518-8
,2021, 'Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China', Microbial Ecology, 82, pp. 319 - 333, http://dx.doi.org/10.1007/s00248-020-01645-z
,2021, 'Multilevel genome typing describes short- And long-term vibrio cholerae molecular epidemiology', Msystems, 6, pp. 10.1128/msystems.00134 - 10.1128/msystems.00121, http://dx.doi.org/10.1128/mSystems.00134-21
,2021, 'Cluster-specific gene markers enhance Shigella and Enteroinvasive Escherichia coli in silico serotyping', , pp. 2021.01.30.428723, http://dx.doi.org/10.1101/2021.01.30.428723
,2021, 'Elucidation of global and national genomic epidemiology of salmonella enterica serovar enteritidis through multilevel genome typing', Microbial Genomics, 7, pp. 000605, http://dx.doi.org/10.1099/MGEN.0.000605
,2021, 'Enhancing genomics-based outbreak detection of endemic salmonella enterica serovar typhimurium using dynamic thresholds', Microbial Genomics, 7, pp. 000310, http://dx.doi.org/10.1099/MGEN.0.000310
,2020, 'Multilevel genome typing: Genomics-guided scalable resolution typing of microbial pathogens', Eurosurveillance, 25, pp. 1900519, http://dx.doi.org/10.2807/1560-7917.ES.2020.25.20.1900519
,2020, 'Highly Sensitive and Specific Detection and Serotyping of Five Prevalent Salmonella Serovars by Multiple Cross-Displacement Amplification', Journal of Molecular Diagnostics, 22, pp. 708 - 719, http://dx.doi.org/10.1016/j.jmoldx.2020.02.006
,2019, 'Case report: Whole genome sequencing based investigation of maternal-neonatal listeriosis in Sichuan, China', BMC Infectious Diseases, 19, pp. 893, http://dx.doi.org/10.1186/s12879-019-4551-9
,2019, 'Pertactin-negative and filamentous hemagglutinin-negative Bordetella pertussis, Australia, 2013-2017', Emerging Infectious Diseases, 25, pp. 1196 - 1199, http://dx.doi.org/10.3201/eid2506.180240
,2019, 'A unique aspartyl protease gene expansion in Talaromyces marneffei plays a role in growth inside host phagocytes', Virulence, 10, pp. 277 - 291, http://dx.doi.org/10.1080/21505594.2019.1593776
,2019, 'Genomic epidemiology of erythromycin-resistant Bordetella pertussis in China', Emerging Microbes and Infections, 8, pp. 461 - 470, http://dx.doi.org/10.1080/22221751.2019.1587315
,2019, 'In silico identification of serovar-specific genes for salmonella serotyping', Frontiers in Microbiology, 10, pp. 835, http://dx.doi.org/10.3389/fmicb.2019.00835
,2016, 'Organism-wide studies into pathogenicity and morphogenesis in Talaromyces marneffei', Future Microbiology, 11, pp. 511 - 526, http://dx.doi.org/10.2217/fmb.16.9
,2013, 'Cell-type-specific transcriptional profiles of the dimorphic pathogen penicillium marneffei reflect distinct reproductive, morphological, and environmental demands', G3 Genes Genomes Genetics, 3, pp. 1997 - 2014, http://dx.doi.org/10.1534/g3.113.006809
,2012, 'Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei', Fungal Genetics and Biology, 49, pp. 772 - 778, http://dx.doi.org/10.1016/j.fgb.2012.08.003
,2012, 'Strategies for the molecular genetic manipulation and visualization of the human fungal pathogen Penicillium marneffei', Fungal Genetics Reports, 59, pp. 1 - 12, http://dx.doi.org/10.4148/1941-4765.1009
,2018, 'Morphological and metabolic adaptation to environmental conditions by Talaromyces marneffei and its role in the host.', in MEDICAL MYCOLOGY, OXFORD UNIV PRESS, pp. S63 - S63, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000434852700347&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2024, A dissection of the genomic antimicrobial resistance epidemiology ofSalmonellaTyphimurium, http://dx.doi.org/10.1101/2024.05.12.593721
,2024, CharacterisingStaphylococcus aureusgenomic epidemiology with Multilevel Genome Typing, http://dx.doi.org/10.1101/2024.05.09.593273
,2024, DODGE: Automated point source bacterial outbreak detection using cumulative long term genomic surveillance, http://dx.doi.org/10.1101/2024.01.21.24301506
,2023, Genomic epidemiology and multilevel genome typing ofBordetella pertussis, http://dx.doi.org/10.1101/2023.04.26.538362
,2023, SaLTy: a novelStaphylococcus aureusLineage Typer, http://dx.doi.org/10.1101/2023.02.03.527095
,2022, Genomic epidemiology and multilevel genome typing of Australian Salmonella enterica serovar Enteritidis, http://dx.doi.org/10.1101/2022.05.18.492204
,2022, MGTdb: A web service and database for studying the global and local genomic epidemiology of bacterial pathogens, http://dx.doi.org/10.1101/2022.06.14.496187
,2021, Cluster-specific gene markers enhance Shigella and Enteroinvasive Escherichia coli in silico serotyping, http://dx.doi.org/10.1101/2021.01.30.428723
,2021, Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance, http://dx.doi.org/10.1101/2021.02.01.429068
,2020, Development and comparison of a novel multiple cross displacement amplification (MCDA) assay with other nucleic acid amplification methods for SARS-CoV-2 detection, http://dx.doi.org/10.1101/2020.10.03.20206193
,2020, Elucidation of global and local genomic epidemiology ofSalmonella entericaserovar Enteritidis through multilevel genome typing, http://dx.doi.org/10.1101/2020.06.30.169953
,