ORCID as entered in ROS

Select Publications
2025, 'Disentangling Carrier-Transport and Interfacial Carrier-Recombination by Mitigating Na Interstitials for 11.9% Efficient Cd-Free Cu2ZnSnS4 Solar Cells', Small, 21, http://dx.doi.org/10.1002/smll.202501905
,2025, 'Constructing A Carrier Collection Framework at The Rear Interface in Cu2ZnSn(S, Se)4 Solar Cells by Selenizing an Inserted CuBi2O4 Nanolayer', ACS Applied Materials and Interfaces, 17, pp. 26480 - 26490, http://dx.doi.org/10.1021/acsami.4c14234
,2025, 'Hydrogen-enhanced carrier collection enabling wide-bandgap Cd-free Cu2ZnSnS4 solar cells with 11.4% certified efficiency', Nature Energy, 10, pp. 255 - 265, http://dx.doi.org/10.1038/s41560-024-01694-5
,2025, 'Multifunctional coatings for solar module glass', Progress in Photovoltaics Research and Applications, 33, pp. 200 - 208, http://dx.doi.org/10.1002/pip.3805
,2025, 'Suppression of Deep-Level Defects Recombination in Cu2ZnSn(S, Se)4 Solar Cells Through Rear-Interface Cesium Doping', Small, http://dx.doi.org/10.1002/smll.202411241
,2024, 'Cd-Free High-Bandgap Cu2ZnSnS4 Solar Cell with 10.7% Certified Efficiency Enabled by Engineering Sn-Related Defects', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202407063
,2024, 'CuSb: The dominant defect in Cu-rich CuSbS2 solar cells fabricated by sulfurizing co-sputtered Cu–Sb precursor', Solar Energy Materials and Solar Cells, 273, http://dx.doi.org/10.1016/j.solmat.2024.112935
,2024, 'Using Advanced Micro-to-atomic Scale Characterizations to Explore the Role of Ge in CZTSSe Solar Cells', Microscopy and Microanalysis, 30, pp. 1976 - 1977, http://dx.doi.org/10.1093/mam/ozae044.977
,2024, 'Solar driven ammonia synthesis with Co-TiOx and Ag nanowires enhanced Cu2ZnSnS4 photocathodes', Applied Catalysis B Environmental, 348, http://dx.doi.org/10.1016/j.apcatb.2024.123836
,2024, 'Nanostructured hybrid catalysts empower the artificial leaf for solar-driven ammonia production from nitrate', Energy and Environmental Science, 17, pp. 5653 - 5665, http://dx.doi.org/10.1039/d3ee03836j
,2024, 'Unveiling the Role of Ge in CZTSSe Solar Cells by Advanced Micro-To-Atom Scale Characterizations', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202305938
,2024, 'Mitigating parasitic absorption in Poly-Si contacts for TOPCon solar cells: A comprehensive review', Solar Energy Materials and Solar Cells, 267, http://dx.doi.org/10.1016/j.solmat.2024.112704
,2024, 'Cd-Free Pure Sulfide Kesterite Cu2ZnSnS4 Solar Cell with Over 800 mV Open-Circuit Voltage Enabled by Phase Evolution Intervention', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202307733
,2024, 'Improved carrier collection efficiency in CZTS solar cells by Li‐enhanced liquid‐phase‐assisted grain growth', EcoEnergy, 2, pp. 181 - 191, http://dx.doi.org/10.1002/ece2.31
,2023, 'Emergence of flexible kesterite solar cells: progress and perspectives', Npj Flexible Electronics, 7, http://dx.doi.org/10.1038/s41528-023-00250-7
,2023, 'Bifacial and Semitransparent Sb2(S,Se)3 Solar Cells for Single‐Junction and Tandem Photovoltaic Applications', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202303936
,2023, 'A modeling framework to quantify the intermediate layer impact in III-V//Si multijunction solar cells', Japanese Journal of Applied Physics, 62, http://dx.doi.org/10.35848/1347-4065/acd45e
,2023, 'Application of Spectral Cathodoluminescence to Multi-Modal Research at the Nano-Scale: Case Studies from the UNSW Electron Microscope Unit', Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 29, pp. 1946 - 1948, http://dx.doi.org/10.1093/micmic/ozad067.1008
,2023, 'Low-Temperature Plasma-Enhanced Atomic Layer Deposition of ZnMgO for Efficient CZTS Solar Cells', ACS Materials Letters, 5, pp. 1456 - 1465, http://dx.doi.org/10.1021/acsmaterialslett.2c01203
,2023, 'Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive', Nature Photonics, 17, pp. 96 - 105, http://dx.doi.org/10.1038/s41566-022-01111-x
,2023, 'Recent progress in defect engineering for kesterite solar cells', Science China Physics Mechanics and Astronomy, 66, http://dx.doi.org/10.1007/s11433-022-1939-6
,2022, '10.3% Efficient Green Cd-Free Cu2ZnSnS4 Solar Cells Enabled by Liquid-Phase Promoted Grain Growth', Small, 18, http://dx.doi.org/10.1002/smll.202204392
,2022, 'Top Stack Optimization for Cu2BaSn(S, Se)4 Photovoltaic Cell Leads to Improved Device Power Conversion Efficiency beyond 6%', Advanced Energy Materials, 12, http://dx.doi.org/10.1002/aenm.202201602
,2022, 'Comparative Study of TiO2 and CdS as the Electron Transport Layer for Sb2S3 Solar Cells', Solar RRL, 6, http://dx.doi.org/10.1002/solr.202200435
,2022, 'Manipulating the Distributions of Na and Cd by Moisture-Assisted Postdeposition Annealing for Efficient Kesterite Cu2ZnSnS4 Solar Cells', Solar Rrl, 6, http://dx.doi.org/10.1002/solr.202200442
,2022, 'Defect Engineering for Efficient Cu2ZnSnS4 Solar Cells via Moisture-Assisted Post-Deposition Annealing', Advanced Optical Materials, 10, http://dx.doi.org/10.1002/adom.202200607
,2022, 'Engineering a Kesterite-Based Photocathode for Photoelectrochemical Ammonia Synthesis from NOx Reduction', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202201670
,2022, 'Low-Cost Fabrication of Sb2S3 Solar Cells: Direct Evaporation from Raw Stibnite Ore', Solar Rrl, 6, http://dx.doi.org/10.1002/solr.202100843
,2022, 'Formation mechanisms of voids and pin-holes in CuSbS2 thin film synthesized by sulfurizing a co-sputtered Cu-Sb precursor', Journal of Materials Chemistry A, 10, pp. 8015 - 8024, http://dx.doi.org/10.1039/d2ta00208f
,2022, 'Large-Grain Spanning Monolayer Cu2ZnSnSe4 Thin-Film Solar Cells Grown from Metal Precursor', Small, 18, http://dx.doi.org/10.1002/smll.202105044
,2022, '9.6%-Efficient all-inorganic Sb 2 (S,Se) 3 solar cells with a MnS hole-transporting layer', Journal of Materials Chemistry A, 10, pp. 2835 - 2841, http://dx.doi.org/10.1039/d1ta09913b
,2022, 'Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells', Nature Energy, http://dx.doi.org/10.1038/s41560-022-01078-7
,2021, 'Improving Performance of Bifacial-Grid III–V Solar Cells Bonded on Glass by Selective Contact Annealing', Solar Rrl, 5, http://dx.doi.org/10.1002/solr.202100438
,2021, 'High-efficiency ultra-thin Cu2ZnSnS4 solar cells by double-pressure sputtering with spark plasma sintered quaternary target', Journal of Energy Chemistry, 61, pp. 186 - 194, http://dx.doi.org/10.1016/j.jechem.2021.01.026
,2021, 'Interface Recombination of Cu2ZnSnS4 Solar Cells Leveraged by High Carrier Density and Interface Defects', Solar Rrl, 5, http://dx.doi.org/10.1002/solr.202100418
,2021, 'Systematic Efficiency Improvement for Cu2ZnSn(S,Se)4 Solar Cells By Double Cation Incorporation with Cd and Ge', Advanced Functional Materials, 31, http://dx.doi.org/10.1002/adfm.202104528
,2021, 'Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO2 Reduction', Small, 17, http://dx.doi.org/10.1002/smll.202100496
,2021, 'High Efficiency Cu2ZnSn(S,Se)4 Solar Cells with Shallow LiZn Acceptor Defects Enabled by Solution-Based Li Post-Deposition Treatment', Advanced Energy Materials, 11, http://dx.doi.org/10.1002/aenm.202003783
,2021, 'Defect-Resolved Effective Majority Carrier Mobility in Highly Anisotropic Antimony Chalcogenide Thin-Film Solar Cells', Solar Rrl, 5, http://dx.doi.org/10.1002/solr.202000693
,2021, 'Analysis of manufacturing cost and market niches for Cu2ZnSnS4(CZTS) solar cells', Sustainable Energy and Fuels, 5, pp. 1044 - 1058, http://dx.doi.org/10.1039/d0se01734e
,2020, '11.6% Efficient Pure Sulfide Cu(In,Ga)S2 Solar Cell through a Cu-Deficient and KCN-Free Process', ACS Applied Energy Materials, 3, pp. 11974 - 11980, http://dx.doi.org/10.1021/acsaem.0c02158
,2020, 'Defect Control for 12.5% Efficiency Cu
2020, 'Deep-level defect in quasi-vertically oriented CuSbS2 thin film', Solar RRL, 4, pp. 2000319 - 2000319, http://dx.doi.org/10.1002/solr.202000319
,2020, 'Revealing Nanoscale Domains in Cu2ZnSnS4 Thin Films by Catalyzed Chemical Etching', Physica Status Solidi Rapid Research Letters, 14, http://dx.doi.org/10.1002/pssr.202000283
,2020, 'Device Postannealing Enabling over 12% Efficient Solution-Processed Cu2ZnSnS4 Solar Cells with Cd2+ Substitution', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.202000121
,2020, 'Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency', Nature Energy, 5, pp. 587 - 595, http://dx.doi.org/10.1038/s41560-020-0652-3
,2020, 'Quasi-Vertically-Orientated Antimony Sulfide Inorganic Thin-Film Solar Cells Achieved by Vapor Transport Deposition', ACS Applied Materials and Interfaces, 12, pp. 22825 - 22834, http://dx.doi.org/10.1021/acsami.0c02697
,2019, 'Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers', Energy and Environmental Science, 12, pp. 2751 - 2764, http://dx.doi.org/10.1039/c9ee01726g
,2019, 'Quasiepitaxy Strategy for Efficient Full-Inorganic Sb2S3 Solar Cells', Advanced Functional Materials, 29, http://dx.doi.org/10.1002/adfm.201901720
,2019, 'Laser-induced aluminium-assisted crystallization of Ge-rich SixGe1-x epitaxy on Si', Thin Solid Films, 679, pp. 55 - 57, http://dx.doi.org/10.1016/j.tsf.2019.04.005
,