ORCID as entered in ROS

Select Publications
2025, 'Corrigendum to “A Combined DFT and NPD Approach to Determine the Structure and Composition of the ε-Phase of Tungsten Boride” [Acta Materialia 259 (2023) 119282] (Acta Materialia (2023) 259, (S1359645423006122), (10.1016/j.actamat.2023.119282))', Acta Materialia, 293, http://dx.doi.org/10.1016/j.actamat.2025.121067
,2025, 'Fission product solubility and speciation in UN SIMFUEL', Journal of Nuclear Materials, 611, http://dx.doi.org/10.1016/j.jnucmat.2025.155815
,2025, 'Investigating the stoichiometry of the ε-phase of boron-11 enriched tungsten boride derived from arc melting for radiation shielding application', Journal of Alloys and Compounds, 1028, http://dx.doi.org/10.1016/j.jallcom.2025.180472
,2024, 'P2-Na2/3Mn0.8 M 0.1 M′0.1O2 (M = Zn, Fe and M′ = Cu, Al, Ti): A Detailed Crystal Structure Evolution Investigation ( vol 33 , pg 3905 , 2021)', CHEMISTRY OF MATERIALS, 36, pp. 11720 - 11720, http://dx.doi.org/10.1021/acs.chemmater.4c03149
,2024, 'Enhanced steam oxidation resistance of uranium nitride nuclear fuel pellets', Corrosion Science, 230, http://dx.doi.org/10.1016/j.corsci.2024.111877
,2023, 'A combined DFT and NPD approach to determine the structure and composition of the ε-phase of tungsten boride', Acta Materialia, 259, http://dx.doi.org/10.1016/j.actamat.2023.119282
,2023, 'Crystallographic characterization of U2CrN3: A neutron diffraction and transmission electron microscopy approach', Nuclear Materials and Energy, 35, pp. 101441, http://dx.doi.org/10.1016/j.nme.2023.101441
,2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202202992
,2022, 'A DFT study to determine the structure and composition of ε-W2B5−x', Journal of Alloys and Compounds, 911, pp. 164962, http://dx.doi.org/10.1016/j.jallcom.2022.164962
,2022, 'Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202201449
,2021, 'P2-Na
2021, 'Dopant and Current Rate Dependence on the Structural Evolution of P2-Na2/3Mn0.8Zn0.1M0.1O2 (M=Cu, Ti): An Operando Study', Chemistry Methods, 1, pp. 295 - 304, http://dx.doi.org/10.1002/cmtd.202000075
,2021, 'Biphasic P2/O3-Na2/3Li0.18Mn0.8Fe0.2O2: a structural investigation', Dalton Transactions, 50, pp. 1357 - 1365, http://dx.doi.org/10.1039/d0dt03351k
,2020, 'Probing the charged state of layered positive electrodes in sodium-ion batteries: Reaction pathways, stability and opportunities', Journal of Materials Chemistry A, 8, pp. 24833 - 24867, http://dx.doi.org/10.1039/d0ta09553b
,2020, 'Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material', Electrochimica Acta, 341, pp. 135978, http://dx.doi.org/10.1016/j.electacta.2020.135978
,2019, 'In situ studies: electrochemistry and scattering', Current Opinion in Electrochemistry, 15, pp. 18 - 26, http://dx.doi.org/10.1016/j.coelec.2019.03.011
,2019, 'High performance P2 sodium layered oxides: An in-depth study into the effect of rationally selected stoichiometry', Journal of Materials Chemistry A, 7, pp. 21812 - 21826, http://dx.doi.org/10.1039/c9ta07346a
,2018, 'Solid State and Materials Chemistry for Sodium‐Ion Batteries', , pp. 1 - 36, http://dx.doi.org/10.1002/9781119951438.eibc2657
,