ORCID as entered in ROS

Select Publications
2020, 'Composition-dependent chemical and structural stabilities of mixed tin-lead inorganic halide perovskites', Physical Chemistry Chemical Physics, 22, pp. 19787 - 19794, http://dx.doi.org/10.1039/d0cp03170d
,2020, 'Illumination-Induced Phase Segregation and Suppressed Solubility Limit in Br-Rich Mixed-Halide Inorganic Perovskites', ACS Applied Materials and Interfaces, 12, pp. 38376 - 38385, http://dx.doi.org/10.1021/acsami.0c10363
,2020, 'Fluorine Substitution in Magnesium Hydride as a Tool for Thermodynamic Control', Journal of Physical Chemistry C, 124, pp. 9109 - 9117, http://dx.doi.org/10.1021/acs.jpcc.9b11211
,2020, 'Correlating the Composition-Dependent Structural and Electronic Dynamics of Inorganic Mixed Halide Perovskites', Chemistry of Materials, 32, pp. 2470 - 2481, http://dx.doi.org/10.1021/acs.chemmater.9b04995
,2019, 'The interplay among molecular structures, crystal symmetries and lattice energy landscapes revealed using unsupervised machine learning: A closer look at pyrrole azaphenacenes', Crystengcomm, 21, pp. 6173 - 6185, http://dx.doi.org/10.1039/c9ce01190k
,2018, 'Recent Advances of Layered Thermoelectric Materials', Advanced Sustainable Systems, 2, http://dx.doi.org/10.1002/adsu.201800046
,2018, 'Large-Scale Computational Screening of Molecular Organic Semiconductors Using Crystal Structure Prediction', Chemistry of Materials, 30, pp. 4361 - 4371, http://dx.doi.org/10.1021/acs.chemmater.8b01621
,2018, 'Machine learning for the structure-energy-property landscapes of molecular crystals', Chemical Science, 9, pp. 1289 - 1300, http://dx.doi.org/10.1039/c7sc04665k
,2018, 'Origins of possible synergistic effects in the interactions between metal atoms and MoS2/graphene heterostructures for battery applications', Physical Chemistry Chemical Physics, 20, pp. 18671 - 18677, http://dx.doi.org/10.1039/c8cp02740d
,2017, 'A hybrid dimer swarm optimizer', COMPUTATIONAL AND THEORETICAL CHEMISTRY, 1102, pp. 98 - 104, http://dx.doi.org/10.1016/j.comptc.2016.12.019
,2017, 'Predicted energy-structure-function maps for the evaluation of small molecule organic semiconductors', Journal of Materials Chemistry C, 5, pp. 7574 - 7584, http://dx.doi.org/10.1039/c7tc02553j
,2016, 'Report on the sixth blind test of organic crystal structure prediction methods', Acta Crystallographica Section B Structural Science Crystal Engineering and Materials, 72, pp. 439 - 459, http://dx.doi.org/10.1107/S2052520616007447
,2014, 'A Density-Based Adaptive Quantum Mechanical/Molecular Mechanical Method', CHEMPHYSCHEM, 15, pp. 3218 - 3225, http://dx.doi.org/10.1002/cphc.201402105
,2013, 'JACOB: An enterprise framework for computational chemistry', Journal of Computational Chemistry, 34, pp. 1420 - 1428, http://dx.doi.org/10.1002/jcc.23272
,2013, 'Hybrid Metaheuristic Approach for Nonlocal Optimization of Molecular Systems', JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 9, pp. 2137 - 2149, http://dx.doi.org/10.1021/ct301079m
,2013, 'Revealing noncovalent interactions in quantum crystallography: Taurine revisited', JOURNAL OF COMPUTATIONAL CHEMISTRY, 34, pp. 466 - 470, http://dx.doi.org/10.1002/jcc.23155
,2013, 'A Systematic Approach to Identify Cooperatively Bound Homotrimers', JOURNAL OF PHYSICAL CHEMISTRY A, 117, pp. 174 - 182, http://dx.doi.org/10.1021/jp310067m
,2012, 'JACOB: A Dynamic Database for Computational Chemistry Benchmarking', JOURNAL OF CHEMICAL INFORMATION AND MODELING, 52, pp. 3255 - 3262, http://dx.doi.org/10.1021/ci300374g
,2011, 'Structure, stability and magnetism of cobalt doped (ZnO)n clusters', Journal of Nanoscience and Nanotechnology, 11, pp. 2564 - 2569
,2009, 'Size dependence and spatial variation of electronic structure in nonpolar ZnO nanobelts', Journal of Physical Chemistry C, 113, pp. 4804 - 4808
,2008, 'Enhacement of CO detection in Al doped Graphene', Chemical Physics Letters, 461, pp. 276 - 279
,2008, 'Enhancement of CO detection in Al doped graphene', Chemical Physics Letters, 461, pp. 276 - 279, http://dx.doi.org/10.1016/j.cplett.2008.07.039
,2008, 'Origin of excitonic emission suppression in an individual ZnO nanobelt', Journal of Physical Chemistry C, 112, pp. 10095 - 10099
,2022, 'Crystalline Complex Oxide Membrane: Sub-1 nm CET Dielectrics for 2D Transistors', in Technical Digest International Electron Devices Meeting Iedm, pp. 761 - 764, http://dx.doi.org/10.1109/IEDM45625.2022.10019466
,2013, 'Revealing noncovalent interactions in quantum crystallography', in ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, INT UNION CRYSTALLOGRAPHY, pp. S92 - S92, http://dx.doi.org/10.1107/S0108767313099194
,2023, Submission 238 to: Australia's Science and Research Priorities - Conversation Starter, http://dx.doi.org/10.26190/unsworks/28595, https://consult.industry.gov.au/sciencepriorities1/survey/view/238
,2025, Flexoelectricity-driven giant polarization in (Bi, Na)TiO3-based ferroelectric thin films, http://dx.doi.org/10.21203/rs.3.rs-6051347/v1
,2024, Accounting for the Vibrational Contribution to the Configurational Entropy in Disordered Solids with Machine Learned Forcefields: A Case Study of Garnet Electrolyte Li7La3Zr2O12, http://dx.doi.org/10.26434/chemrxiv-2024-xbsdb
,2022, Computational Material Database of Free-Standing 2D Perovskites, http://dx.doi.org/10.26434/chemrxiv-2022-7wqj3
,2021, Composition and Dimension Dependent Static and Dynamic Stabilities of Inorganic Mixed Halide Antimony Perovskites, http://dx.doi.org/10.26434/chemrxiv.14191301.v1
,2021, Composition and Dimension Dependent Static and Dynamic Stabilities of Inorganic Mixed Halide Antimony Perovskites, http://dx.doi.org/10.26434/chemrxiv.14191301
,2020, Mapping Temperature-Dependent Energy-Structure-Property Relationships for Solid Solutions of Inorganic Halide Perovskites, http://dx.doi.org/10.26434/chemrxiv.12927359.v1
,2020, Mapping Temperature-Dependent Energy-Structure-Property Relationships for Solid Solutions of Inorganic Halide Perovskites, http://dx.doi.org/10.26434/chemrxiv.12927359
,2019, The Interplay among Molecular Structures, Crystal Symmetries and Lattice Energy Landscapes Revealed by Unsupervised Machine Learning: A Closer Look at Pyrrole Azaphenacenes, http://dx.doi.org/10.26434/chemrxiv.9037481
,2019, The Interplay among Molecular Structures, Crystal Symmetries and Lattice Energy Landscapes Revealed by Unsupervised Machine Learning: A Closer Look at Pyrrole Azaphenacenes, http://dx.doi.org/10.26434/chemrxiv.9037481.v1
,