Select Publications
Journal articles
, 2025, 'Rate-dependent structure-electrochemistry relationships and origins of capacity fading in P2-type Na2/3Fe2/3Mn1/3O2', Inorganic Chemistry Frontiers, 12, pp. 2731 - 2746, http://dx.doi.org/10.1039/d4qi02804j
, 2024, 'A Practical and Sustainable Ni/Co-Free High-Energy Electrode Material: Nanostructured LiMnO2', ACS Central Science, 10, pp. 1718 - 1732, http://dx.doi.org/10.1021/acscentsci.4c00578
, 2024, 'Surface energies control the anisotropic growth of β-Ni(OH)2 nanoparticles in stirred reactors', Surfaces and Interfaces, 51, http://dx.doi.org/10.1016/j.surfin.2024.104736
, 2024, 'Interface and Electrode Microstructure Engineering for Optimizing Performance of the LiNiO2 Cathode in All-Solid-State Batteries', Chemistry of Materials, 36, pp. 2588 - 2598, http://dx.doi.org/10.1021/acs.chemmater.4c00301
, 2024, 'Cover Picture: Entropy‐Mediated Stable Structural Evolution of Prussian White Cathodes for Long‐Life Na‐Ion Batteries (Angew. Chem. Int. Ed. 7/2024)', Angewandte Chemie International Edition, 63, http://dx.doi.org/10.1002/anie.202400817
, 2024, 'Entropy-Mediated Stable Structural Evolution of Prussian White Cathodes for Long-Life Na-Ion Batteries', Angewandte Chemie International Edition, 63, http://dx.doi.org/10.1002/anie.202315371
, 2024, 'Entropy‐Mediated Stable Structural Evolution of Prussian White Cathodes for Long‐Life Na‐Ion Batteries', Angewandte Chemie, 136, http://dx.doi.org/10.1002/ange.202315371
, 2024, 'Titelbild: Entropy‐Mediated Stable Structural Evolution of Prussian White Cathodes for Long‐Life Na‐Ion Batteries (Angew. Chem. 7/2024)', Angewandte Chemie, 136, http://dx.doi.org/10.1002/ange.202400817
, 2023, 'Conformal Li2HfO3/HfO2Nanoparticle Coatings on Layered Ni-Rich Oxide Cathodes for Stabilizing Interfaces in All-Solid-State Batteries', Chemistry of Materials, 35, pp. 6835 - 6844, http://dx.doi.org/10.1021/acs.chemmater.3c01116
, 2023, 'In situ neutron diffraction to investigate the solid-state synthesis of Ni-rich cathode materials', Journal of Applied Crystallography, 56, pp. 1066 - 1075, http://dx.doi.org/10.1107/S1600576723004909
, 2023, 'Stoichiometry matters: correlation between antisite defects, microstructure and magnetic behavior in the cathode material Li1−zNi1+zO2', Journal of Materials Chemistry A, 11, pp. 13468 - 13482, http://dx.doi.org/10.1039/d3ta01621h
, 2023, 'A near dimensionally invariable high-capacity positive electrode material', Nature Materials, 22, pp. 225 - 234, http://dx.doi.org/10.1038/s41563-022-01421-z
, 2023, 'Low-Temperature Ion Exchange Synthesis of Layered LiNiO2 Single Crystals with High Ordering', Chemistry of Materials, 35, pp. 648 - 657, http://dx.doi.org/10.1021/acs.chemmater.2c03203
, 2022, 'Real-Time Crystallization of LiCoO2from β-Co(OH)2and Co3O4: Synthetic Pathways and Structural Evolution', Chemistry of Materials, 34, pp. 9955 - 9969, http://dx.doi.org/10.1021/acs.chemmater.2c02050
, 2022, 'Single- to Few-Layer Nanoparticle Cathode Coating for Thiophosphate-Based All-Solid-State Batteries', ACS Nano, 16, pp. 18682 - 18694, http://dx.doi.org/10.1021/acsnano.2c07314
, 2022, 'Alleviating Anisotropic Volume Variation at Comparable Li Utilization during Cycling of Ni-Rich, Co-Free Layered Oxide Cathode Materials', Journal of Physical Chemistry C, 126, pp. 16952 - 16964, http://dx.doi.org/10.1021/acs.jpcc.2c04946
, 2022, 'Recent Advances Towards Practical LiNiO2 Cathode Materials: Optimised Calcination and Modification with W Via a Single Step Synthesis Route', ECS Meeting Abstracts, MA2022-02, pp. 285 - 285, http://dx.doi.org/10.1149/ma2022-023285mtgabs
, 2022, 'Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium-Ion Batteries', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202202372
, 2022, '(Digital Presentation) Modifying LiNiO2 with W Via a Single Step Synthesis Route', ECS Meeting Abstracts, MA2022-01, pp. 218 - 218, http://dx.doi.org/10.1149/ma2022-012218mtgabs
, 2022, 'Advanced Nanoparticle Coatings for Stabilizing Layered Ni-Rich Oxide Cathodes in Solid-State Batteries', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202111829
, 2022, 'Single step synthesis of W-modified LiNiO2 using an ammonium tungstate flux', Journal of Materials Chemistry A, 10, pp. 7841 - 7855, http://dx.doi.org/10.1039/d1ta10568j
, 2022, 'Single versus poly-crystalline layered oxide cathode materials for solid-state battery applications - a short review article', Current Opinion in Electrochemistry, 31, http://dx.doi.org/10.1016/j.coelec.2021.100877
, 2022, 'Advanced Nanoparticle Coatings for Stabilizing Layered Ni‐Rich Oxide Cathodes in Solid‐State Batteries (Adv. Funct. Mater. 23/2022)', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202270135
, 2022, 'Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium‐Ion Batteries (Adv. Funct. Mater. 34/2022)', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202270191
, 2021, 'High-Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage', Advanced Materials, 33, http://dx.doi.org/10.1002/adma.202101342
, 2021, 'High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte', ACS Applied Energy Materials, 4, pp. 7338 - 7345, http://dx.doi.org/10.1021/acsaem.1c01487
, 2021, 'Operando Characterization Techniques for All-Solid-State Lithium-Ion Batteries', Advanced Energy and Sustainability Research, 2, http://dx.doi.org/10.1002/aesr.202100004
, 2021, 'Cycling Performance and Limitations of LiNiO2in Solid-State Batteries', ACS Energy Letters, 6, pp. 3020 - 3028, http://dx.doi.org/10.1021/acsenergylett.1c01447
, 2021, 'High‐Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage (Adv. Mater. 34/2021)', Advanced Materials, 33, http://dx.doi.org/10.1002/adma.202170269
, 2020, 'Nanostructured LiMnO2 with Li3PO4 Integrated at the Atomic Scale for High-Energy Electrode Materials with Reversible Anionic Redox', ACS Central Science, 6, pp. 2326 - 2338, http://dx.doi.org/10.1021/acscentsci.0c01200
, 2020, 'Probing the charged state of layered positive electrodes in sodium-ion batteries: Reaction pathways, stability and opportunities', Journal of Materials Chemistry A, 8, pp. 24833 - 24867, http://dx.doi.org/10.1039/d0ta09553b
, 2020, 'High-performance NaVO3 with mixed cationic and anionic redox reactions for Na-ion battery applications', Chemistry of Materials, 32, pp. 8836 - 8844, http://dx.doi.org/10.1021/acs.chemmater.0c02244
, 2020, 'Two-Phase Electrochemical Proton Transport and Storage in α-MoO3 for Proton Batteries', Cell Reports Physical Science, 1, http://dx.doi.org/10.1016/j.xcrp.2020.100225
, 2020, 'Iron-Doped Sodium-Vanadium Fluorophosphates: Na3V2-yO2-yFey(PO4)2F1+ y (y < 0.3)', Inorganic Chemistry, 59, pp. 854 - 862, http://dx.doi.org/10.1021/acs.inorgchem.9b03111
, 2019, 'Monitoring lead-acid battery function using operando neutron radiography', Journal of Power Sources, 438, http://dx.doi.org/10.1016/j.jpowsour.2019.226976
, 2019, 'Exploration of the high temperature phase evolution of electrochemically modified Sc2(WO4)3: Via potassium discharge', Inorganic Chemistry Frontiers, 6, pp. 2718 - 2726, http://dx.doi.org/10.1039/c9qi00699k
, 2019, 'Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries', ACS Sustainable Chemistry and Engineering, 7, pp. 10310 - 10322, http://dx.doi.org/10.1021/acssuschemeng.9b00135
, 2019, 'In situ neutron powder diffraction studies', Physical Sciences Reviews, 4, http://dx.doi.org/10.1515/psr-2018-0155
, 2019, 'In situ studies: electrochemistry and scattering', Current Opinion in Electrochemistry, 15, pp. 18 - 26, http://dx.doi.org/10.1016/j.coelec.2019.03.011
, 2019, '(Invited) Can a “Battery” Only be Used as a “Battery” or Can We Do More?', ECS Meeting Abstracts, MA2019-03, pp. 59 - 59, http://dx.doi.org/10.1149/ma2019-03/1/59
, 2019, 'Structural Evolution and High-Voltage Structural Stability of Li(Ni x Mn y Co z )O 2 Electrodes', Chemistry of Materials, 31, pp. 376 - 386, http://dx.doi.org/10.1021/acs.chemmater.8b03525
, 2019, 'Exploring the rate dependence of phase evolution in P2-type Na2/3Mn0.8Fe0.1Ti0.1O2', Journal of Materials Chemistry A, 7, pp. 12115 - 12125, http://dx.doi.org/10.1039/c9ta01366k
, 2018, 'Electrochemical Modification of Negative Thermal Expansion Materials in the Ta xNb1- xVO5 Series', Inorganic Chemistry, 57, pp. 10633 - 10639, http://dx.doi.org/10.1021/acs.inorgchem.8b01280
, 2018, 'Structural evidence for Mg-doped LiFePO4 electrode polarisation in commercial Li-ion batteries', Journal of Power Sources, 394, pp. 1 - 8, http://dx.doi.org/10.1016/j.jpowsour.2018.05.024
, 2018, 'Insight into the formation of lithium alloys in all-solid-state thin film lithium batteries', Frontiers in Energy Research, 6, http://dx.doi.org/10.3389/fenrg.2018.00064
, 2018, 'SmFeO3 and Bi-doped SmFeO3 perovskites as an alternative class of electrodes in lithium-ion batteries', Crystengcomm, 20, pp. 6165 - 6172, http://dx.doi.org/10.1039/c8ce00780b
, 2017, 'An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries', Advanced Energy Materials, 7, http://dx.doi.org/10.1002/aenm.201602911
, 2017, 'An Operando Mechanistic Evaluation of a Solar-Rechargeable Sodium-Ion Intercalation Battery', Advanced Energy Materials, 7, http://dx.doi.org/10.1002/aenm.201700545
, 2017, 'Application of Operando Methods for Characterisation of Structural Evolution in Electrochemical Systems', ECS Meeting Abstracts, MA2017-02, pp. 187 - 187, http://dx.doi.org/10.1149/ma2017-02/3/187
, 2017, 'Correlating cycling history with structural evolution in commercial 26650 batteries using in operando neutron powder diffraction', Journal of Power Sources, 343, pp. 446 - 457, http://dx.doi.org/10.1016/j.jpowsour.2016.12.103