ORCID as entered in ROS

Select Publications
2025, 'Reversibly Switching Hydrogen-Responsive Palladium–Graphene Composite Membranes', Advanced Functional Materials, 35, http://dx.doi.org/10.1002/adfm.202421831
,2025, 'Evaluating Cation-Exchange Membrane Properties Affecting Polymer Electrolyte Membrane Water Electrolysis', ACS Omega, 10, pp. 10425 - 10431, http://dx.doi.org/10.1021/acsomega.4c10548
,2025, 'Designing nanohydrogels/organosilica composite membranes to stabilize CO2 separation performance in dry and wet conditions', Journal of Membrane Science, 717, http://dx.doi.org/10.1016/j.memsci.2024.123642
,2025, 'Surface Engineering of Polymer Hydrogels Toward Functional Soft Material Innovations', Macromolecular Chemistry and Physics, http://dx.doi.org/10.1002/macp.202400511
,2023, 'Cascaded compression of size distribution of nanopores in monolayer graphene', Nature, 623, pp. 956 - 963, http://dx.doi.org/10.1038/s41586-023-06689-y
,2023, 'An abnormal size effect enables ampere-level O2 electroreduction to hydrogen peroxide in neutral electrolytes', ENERGY & ENVIRONMENTAL SCIENCE, 16, pp. 3363 - 3372, http://dx.doi.org/10.1039/d3ee00509g
,2023, 'Bioinspired inhibition of aggregation in metal-organic frameworks (MOFs)', ISCIENCE, 26, http://dx.doi.org/10.1016/j.isci.2023.106239
,2023, 'Back Cover Image: Carbon Neutralization, Volume 2, Issue 4, July 2023', Carbon Neutralization, 2, http://dx.doi.org/10.1002/cnl2.84
,2023, 'Metal-organic framework (MOF) thickness control for carbon dioxide electroreduction to formate', CARBON NEUTRALIZATION, 2, pp. 458 - 466, http://dx.doi.org/10.1002/cnl2.66
,2022, 'Graphene Hydrogel as a Porous Scaffold for Cartilage Regeneration', ACS Applied Materials and Interfaces, 14, pp. 54431 - 54438, http://dx.doi.org/10.1021/acsami.2c11307
,2021, 'Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration', Science Advances, 7, http://dx.doi.org/10.1126/sciadv.abg6263
,2021, 'Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes', Nature Nanotechnology, 16, pp. 989 - 995, http://dx.doi.org/10.1038/s41565-021-00933-0
,2021, 'Structural and chemical interplay between nano-active and encapsulation materials in a core-shell SnO2@MXene lithium ion anode system', Crystengcomm, 23, pp. 368 - 377, http://dx.doi.org/10.1039/d0ce01468k
,2020, 'Solvation-Involved Nanoionics: New Opportunities from 2D Nanomaterial Laminar Membranes', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.201904562
,2019, 'A Porous and Interconnected Polypyrrole Film with High Conductivity and Ion Accessibility as Electrode for Flexible All-Solid-State Supercapacitors', Chemelectrochem, 6, pp. 5479 - 5485, http://dx.doi.org/10.1002/celc.201901514
,2018, 'Ion-Transport Experiments to Probe the Nanostructure of Graphene/Polymer Membranes', Small Methods, 2, http://dx.doi.org/10.1002/SMTD.201800187
,2018, 'Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes', Nature Nanotechnology, 13, pp. 685 - 690, http://dx.doi.org/10.1038/s41565-018-0181-4
,2018, 'An equivalent 1D nanochannel model to describe ion transport in multilayered graphene membranes', Progress in Natural Science Materials International, 28, pp. 246 - 250, http://dx.doi.org/10.1016/j.pnsc.2018.02.009
,2016, 'Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration', Advanced Materials, 28, pp. 4025 - 4031, http://dx.doi.org/10.1002/adma.201505375
,2016, 'Nanotechnology: Ion transport in complex layered Graphene-Based membranes with tuneable interlayer spacing', Science Advances, 2, http://dx.doi.org/10.1126/sciadv.1501272
,2016, 'Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes', Nano Research, 9, pp. 174 - 186, http://dx.doi.org/10.1007/s12274-015-0978-5
,2014, 'Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels', Advanced Materials, 26, pp. 3333 - 3337, http://dx.doi.org/10.1002/adma.201305359
,2014, 'Optical characterisation of non-covalent interactions between non-conjugated polymers and chemically converted graphene', Australian Journal of Chemistry, 67, pp. 168 - 172, http://dx.doi.org/10.1071/CH13243
,2013, 'Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane', Advanced Materials, 25, pp. 6064 - 6068, http://dx.doi.org/10.1002/adma.201302441
,2013, 'Dynamic electrosorption analysis: A viable liquid-phase characterization method for porous carbon?', Journal of Materials Chemistry A, 1, pp. 9332 - 9340, http://dx.doi.org/10.1039/c3ta10801e
,2013, 'Self-supporting graphene hydrogel film as an experimental platform to evaluate the potential of graphene for bone regeneration', Advanced Functional Materials, 23, pp. 3494 - 3502, http://dx.doi.org/10.1002/adfm.201203637
,2013, 'Dynamic electrosorption analysis as an effective means to characterise the structure of bulk graphene assemblies', Chemistry A European Journal, 19, pp. 3082 - 3089, http://dx.doi.org/10.1002/chem.201203219
,2013, 'Solvated graphenes: An emerging class of functional soft materials', Advanced Materials, 25, pp. 13 - 30, http://dx.doi.org/10.1002/adma.201203567
,2013, 'Liquid-mediated dense integration of graphene materials for compact capacitive energy storage', Science, 341, pp. 534 - 537, http://dx.doi.org/10.1126/science.1239089
,2012, 'Multilayered graphene membrane as an experimental platform to probe nano-confined electrosorption', Progress in Natural Science Materials International, 22, pp. 668 - 672, http://dx.doi.org/10.1016/j.pnsc.2012.11.002
,2011, 'Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films', Angewandte Chemie International Edition, 50, pp. 7325 - 7328, http://dx.doi.org/10.1002/anie.201100723
,2010, 'Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: Effects of grafted layer thickness and protein size', Colloids and Surfaces B Biointerfaces, 76, pp. 468 - 474, http://dx.doi.org/10.1016/j.colsurfb.2009.12.006
,