ORCID as entered in ROS

Select Publications
2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 1 - 22, http://dx.doi.org/10.1007/978-981-10-6739-6_148-1
,2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 676 - 696, http://dx.doi.org/10.1007/978-981-33-4221-7_148
,2025, 'Ultra-stabilized Cu2 + sites in conductive MOF/t-Cu2O interface for benchmark CO2 reduction', Nano Energy, 141, http://dx.doi.org/10.1016/j.nanoen.2025.111077
,2025, 'Harmonizing Ruthenium Atom-Cluster Moieties for Stable Proton Exchange Membrane Water Electrolysis', ACS Catalysis, 15, pp. 11705 - 11715, http://dx.doi.org/10.1021/acscatal.5c02132
,2025, 'Ampere-level electroreduction of CO2 and CO', Chemical Society Reviews, 54, pp. 6973 - 7016, http://dx.doi.org/10.1039/d4cs00863d
,2025, 'Efficient hydrogen evolution at Ni/CeOx interfaces in anion-exchange membrane water electrolysers', Energy and Environmental Science, 18, pp. 6248 - 6259, http://dx.doi.org/10.1039/d4ee06113f
,2025, 'Fluorine Doping-Assisted Reconstruction of Isolated Cu Sites for CO2 Electroreduction Toward Multicarbon Products', Advanced Materials, 37, http://dx.doi.org/10.1002/adma.202417443
,2025, 'Dual Metal Fe–Mn–N–C Sites with Improved Stability for the Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell', Small Methods, http://dx.doi.org/10.1002/smtd.202500116
,2025, 'Low-Surface-Energy Copper Promotes Atomic Diffusion and Ordering in PtFeCu Intermetallic Compounds for Oxygen Reduction Catalysis', Advanced Functional Materials, http://dx.doi.org/10.1002/adfm.202501610
,2024, 'Tunable Ag-Ox coordination for industrial-level carbon-negative CO2 electrolysis', Nano Energy, 131, http://dx.doi.org/10.1016/j.nanoen.2024.110265
,2024, 'Molecule Doping of Atomically Dispersed Cu–Au Alloy for Enhancing Electroreduction of CO to C2+ Products', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202406281
,2024, 'Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications', Advanced Materials, 36, pp. e2404659, http://dx.doi.org/10.1002/adma.202404659
,2024, 'Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202301373
,2024, 'Suppressed Manganese Oxides Shuttling in Acidic Electrolytes Extends Shelf-Life of Electrolytic Proton Batteries', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202315706
,2024, 'Defect-balanced active and stable Co3O4−x for proton exchange membrane water electrolysis at ampere-level current density', Energy and Environmental Science, 17, pp. 4196 - 4204, http://dx.doi.org/10.1039/d4ee00977k
,2024, 'Deciphering Mesopore-Augmented CO2 Electroreduction over Atomically Dispersed Fe-N-doped Carbon Catalysts', ACS Catalysis, 14, pp. 3926 - 3932, http://dx.doi.org/10.1021/acscatal.3c05144
,2023, 'Highly Ordered Hierarchical Porous Single-Atom Fe Catalyst with Promoted Mass Transfer for Efficient Electroreduction of CO2', Advanced Energy Materials, 13, http://dx.doi.org/10.1002/aenm.202302007
,2023, 'Operando deconvolution of the degradation mechanisms of iron-nitrogen-carbon catalysts in proton exchange membrane fuel cells', Energy and Environmental Science, 16, pp. 3792 - 3802, http://dx.doi.org/10.1039/d3ee01166f
,2023, 'Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and Anion Exchange Membrane Water/Seawater Electrolyzers', Small, 19, http://dx.doi.org/10.1002/smll.202208076
,2023, 'From bulk metals to single-atoms: design of efficient catalysts for the electroreduction of CO2', Chemical Communications, 59, pp. 7731 - 7742, http://dx.doi.org/10.1039/d3cc01581e
,2023, 'Atomically Dispersed Cu-Au Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate', ACS Catalysis, 13, pp. 5689 - 5696, http://dx.doi.org/10.1021/acscatal.2c06145
,2023, 'Co-insertion of Water with Protons into Organic Electrodes Enables High-Rate and High-Capacity Proton Batteries', Small Structures, 4, http://dx.doi.org/10.1002/sstr.202200257
,2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202202992
,2022, 'Heterostructured V-Doped Ni2P/Ni12P5 Electrocatalysts for Hydrogen Evolution in Anion Exchange Membrane Water Electrolyzers', Small, 18, http://dx.doi.org/10.1002/smll.202204758
,2022, 'The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO2', Current Opinion in Green and Sustainable Chemistry, 37, http://dx.doi.org/10.1016/j.cogsc.2022.100651
,2022, 'Single atom-based catalysts for electrochemical CO2 reduction', Chinese Journal of Catalysis, 43, pp. 1547 - 1597, http://dx.doi.org/10.1016/S1872-2067(21)64000-7
,2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction', Angewandte Chemie International Edition, 61, http://dx.doi.org/10.1002/anie.202203335
,2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy‐Efficient CO2 Electroreduction', Angewandte Chemie, 134, http://dx.doi.org/10.1002/ange.202203335
,2022, 'Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202201449
,2022, 'Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction', Current Opinion in Electrochemistry, 31, http://dx.doi.org/10.1016/j.coelec.2021.100854
,2021, 'Nitrogen Vacancy Induced Coordinative Reconstruction of Single-Atom Ni Catalyst for Efficient Electrochemical CO2 Reduction', Advanced Functional Materials, 31, http://dx.doi.org/10.1002/adfm.202107072
,2021, 'Sulfur-Dopant-Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni-N2 Moieties', Angewandte Chemie International Edition, 60, pp. 23342 - 23348, http://dx.doi.org/10.1002/anie.202109373
,2021, 'Sulfur‐Dopant‐Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni‐N2 Moieties', Angewandte Chemie, 133, pp. 23530 - 23536, http://dx.doi.org/10.1002/ange.202109373
,2021, 'Vanadium-induced fragmentation of crystalline CoFe hydr(oxy)oxide electrocatalysts for enhanced oxygen evolution reaction', International Journal of Hydrogen Energy, 46, pp. 35230 - 35238, http://dx.doi.org/10.1016/j.ijhydene.2021.08.080
,2021, '“Water-in-Sugar” Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage', Small, 17, pp. e2102375, http://dx.doi.org/10.1002/smll.202102375
,2021, 'In-plane sulfur vacancy of MoS2 enabling efficient CO2 hydrogenation to methanol at low temperature', Science China Chemistry, 64, pp. 684 - 685, http://dx.doi.org/10.1007/s11426-021-9994-9
,2020, 'Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction', Angewandte Chemie, 132, pp. 21677 - 21682, http://dx.doi.org/10.1002/ange.202009616
,2020, 'Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction', Angewandte Chemie International Edition, 59, pp. 21493 - 21498, http://dx.doi.org/10.1002/anie.202009616
,2020, 'Confinement of Ionic Liquids at Single-Ni-Sites Boost Electroreduction of CO2in Aqueous Electrolytes', ACS Catalysis, 10, pp. 13171 - 13178, http://dx.doi.org/10.1021/acscatal.0c03873
,2020, 'Cobalt oxide micro flowers derived from hydrothermal synthesised cobalt sulphide pre-catalyst for enhanced water oxidation', Electrochimica Acta, 355, http://dx.doi.org/10.1016/j.electacta.2020.136802
,2020, 'Vitamin B12on Graphene for Highly Efficient CO2Electroreduction', ACS Applied Materials and Interfaces, 12, pp. 41288 - 41293, http://dx.doi.org/10.1021/acsami.0c10125
,2020, 'Defective Indium/Indium Oxide Heterostructures for Highly Selective Carbon Dioxide Electrocatalysis', Inorganic Chemistry, 59, pp. 12437 - 12444, http://dx.doi.org/10.1021/acs.inorgchem.0c01544
,2020, '(N, B) Dual Heteroatom-Doped Hierarchical Porous Carbon Framework for Efficient Electroreduction of Carbon Dioxide', ACS Sustainable Chemistry and Engineering, 8, pp. 6003 - 6010, http://dx.doi.org/10.1021/acssuschemeng.0c00739
,2020, 'Ruthenium Complexes in Homogeneous and Heterogeneous Catalysis for Electroreduction of CO2', Chemcatchem, 12, pp. 1292 - 1296, http://dx.doi.org/10.1002/cctc.201902020
,2019, 'Carbon-based catalysts for electrochemical CO2 reduction', Sustainable Energy & Fuels, http://dx.doi.org/10.1039/c9se00527g
,2019, 'Isolated Diatomic Ni-Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO2', Angewandte Chemie International Edition, 58, pp. 6972 - 6976, http://dx.doi.org/10.1002/anie.201901575
,2019, 'Isolated Diatomic Ni‐Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO2', Angewandte Chemie, 131, pp. 7046 - 7050, http://dx.doi.org/10.1002/ange.201901575
,2019, 'Nanostructured amalgams with tuneable silver-mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide', Journal of Materials Chemistry A, 7, pp. 15907 - 15912, http://dx.doi.org/10.1039/c9ta03611c
,2018, 'Design of Electrocatalysts and Electrochemical Cells for Carbon Dioxide Reduction Reactions', Advanced Materials Technologies, 3, http://dx.doi.org/10.1002/admt.201700377
,2016, 'Enhanced Sensitivity for Hydrogen Peroxide Detection: Polydiacetylene Vesicles with Phenylboronic Acid Head Group', Journal of Fluorescence, 26, pp. 121 - 127, http://dx.doi.org/10.1007/s10895-015-1691-1
,