ORCID as entered in ROS

Select Publications
2021, The SMART protocol -- Pulse engineering of a global field for robust and universal quantum computation, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org/10.48550/arxiv.2107.14622
,2021, Fast Bayesian tomography of a two-qubit gate set in silicon, http://dx.doi.org/10.1103/PhysRevApplied.17.024068
,2021, Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits, http://arxiv.org/abs/2107.13664v2
,2021, A high-sensitivity charge sensor for silicon qubits above one kelvin, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2021, Roadmap on quantum nanotechnologies, http://dx.doi.org/10.48550/arxiv.2101.07882
,2020, Single-electron spin resonance in a nanoelectronic device using a global field, http://dx.doi.org/10.1126/sciadv.abg9158
,2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.1038/s41467-021-23437-w
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.1038/s41467-021-24371-7
,2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2019, A silicon quantum-dot-coupled nuclear spin qubit, http://dx.doi.org/10.48550/arxiv.1904.08260
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.1038/s41586-020-2171-6
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.1038/s41467-019-14053-w
,2018, Single-spin qubits in isotopically enriched silicon at low magnetic field, http://dx.doi.org/10.48550/arxiv.1812.08347
,2018, Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates, http://dx.doi.org/10.1103/PhysRevA.99.052321
,2018, Gate-based single-shot readout of spins in silicon, http://dx.doi.org/10.1038/s41565-019-0400-7
,2018, Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction, http://dx.doi.org/10.1103/PhysRevX.9.021028
,2018, Silicon qubit fidelities approaching incoherent noise limits via pulse engineering, http://dx.doi.org/10.1038/s41928-019-0234-1
,2018, High-fidelity and robust two-qubit gates for quantum-dot spin qubits in silicon, http://dx.doi.org/10.1103/PhysRevA.99.042310
,2018, Fidelity benchmarks for two-qubit gates in silicon, http://dx.doi.org/10.1038/s41586-019-1197-0
,2018, Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy, http://dx.doi.org/10.1103/PhysRevApplied.10.044017
,2018, Spin filling and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot, http://dx.doi.org/10.1038/s41467-018-05700-9
,2017, Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout, http://dx.doi.org/10.1038/s41467-018-06039-x
,2017, Interface induced spin-orbit interaction in silicon quantum dots and prospects for scalability, http://dx.doi.org/10.1103/PhysRevB.97.241401
,2016, Valley splitting of single-electron Si MOS quantum dots, http://dx.doi.org/10.1063/1.4972514
,2016, Silicon CMOS architecture for a spin-based quantum computer, http://dx.doi.org/10.48550/arxiv.1609.09700
,2016, Impact of g-factors and valleys on spin qubits in a silicon double quantum dot, http://dx.doi.org/10.1103/PhysRevB.96.045302
,2015, Spin-orbit coupling and operation of multi-valley spin qubits, http://dx.doi.org/10.48550/arxiv.1505.01213
,2015, Non-exponential Fidelity Decay in Randomized Benchmarking with Low-Frequency Noise, http://dx.doi.org/10.48550/arxiv.1502.05119
,2014, A Two Qubit Logic Gate in Silicon, http://dx.doi.org/10.48550/arxiv.1411.5760
,2014, An addressable quantum dot qubit with fault-tolerant control fidelity, http://dx.doi.org/10.48550/arxiv.1407.1950
,2014, Charge State Hysteresis in Semiconductor Quantum Dots, http://dx.doi.org/10.48550/arxiv.1407.1625
,2014, Charge Offset Stability in Si Single Electron Devices with Al Gates, http://dx.doi.org/10.48550/arxiv.1406.7475
,2013, Coulomb interaction and valley-orbit coupling in Si quantum dots, http://dx.doi.org/10.48550/arxiv.1308.2728
,2013, Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting, http://dx.doi.org/10.48550/arxiv.1302.0983
,2012, Orbital and valley state spectra of a few-electron silicon quantum dot, http://dx.doi.org/10.48550/arxiv.1204.0843
,2011, Dynamically controlled charge sensing of a few-electron silicon quantum dot, http://dx.doi.org/10.48550/arxiv.1107.1557
,2011, Spin filling of valley-orbit states in a silicon quantum dot, http://dx.doi.org/10.48550/arxiv.1103.2895
,2010, Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot, http://dx.doi.org/10.48550/arxiv.1012.1410
,