ORCID as entered in ROS

Select Publications
2025, Super-recognisers sample visual information of superior computational value for facial recognition, http://dx.doi.org/10.31219/osf.io/3h5uj_v2
,2025, Super-Recognisers can Detect AI-hyperrealism, http://dx.doi.org/10.31234/osf.io/fwjsb_v2
,2025, The State of Modeling Face Processing in Humans with Deep Learning, http://dx.doi.org/10.31234/osf.io/hfjmq_v2
,2024, What is special about super-recognisers?, http://dx.doi.org/10.31234/osf.io/sd95m
,2024, AI-generated face detection: Why super-recognisers succeed where others fail, http://dx.doi.org/10.31234/osf.io/fwjsb
,2024, Flexible use of facial features supports face identity processing, http://dx.doi.org/10.31234/osf.io/c7yfu
,2024, Normative face recognition ability test scores vary across online participant pools, http://dx.doi.org/10.31234/osf.io/52k7w
,2024, Super-Recognisers can Detect AI-hyperrealism, http://dx.doi.org/10.31234/osf.io/fwjsb_v1
,2024, The State of Modeling Face Processing in Humans with Deep Learning, http://dx.doi.org/10.31234/osf.io/hfjmq
,2024, The State of Modeling Face Processing in Humans with Deep Learning, http://dx.doi.org/10.31234/osf.io/hfjmq_v1
,2023, Superior computational value of face information sampled by super-recognizers, http://dx.doi.org/10.31219/osf.io/3h5uj
,2023, Superior computational value of face information sampled by super-recognizers, http://dx.doi.org/10.31219/osf.io/3h5uj_v1
,2022, Looking at faces in the wild, http://dx.doi.org/10.31234/osf.io/v7df6
,2021, Diverse routes to expertise in facial recognition, http://dx.doi.org/10.31234/osf.io/fmznh
,2021, Face information sampling in super-recognizers, http://dx.doi.org/10.31234/osf.io/z2k4a
,2021, GFMT2: A psychometric measure of face matching ability, http://dx.doi.org/10.31234/osf.io/a3fh4
,2021, Masked face identification is improved by diagnostic feature training, http://dx.doi.org/10.31234/osf.io/e9fq3
,2021, Partitioning natural face image variability emphasises within-identity over between-identity representation for understanding accurate recognition, http://dx.doi.org/10.31234/osf.io/w58k3
,2020, Performance of Typical and Superior Face Recognisers on a Novel Interactive Face Matching Procedure, http://dx.doi.org/10.31234/osf.io/kbm2g
,2020, Can face identification ability be trained? Evidence for two routes to expertise, http://dx.doi.org/10.31234/osf.io/g7qfd
,2020, Understanding professional expertise in unfamiliar face matching, http://dx.doi.org/10.31234/osf.io/z2ugp
,2020, UNSW Face Test: A screening tool for super-recognizers, http://dx.doi.org/10.31234/osf.io/k7mf6
,