ORCID as entered in ROS

Select Publications
2007, Chapter 32 Heavy Mineral Constraints on the Provenance of Cenozoic Sediments from the Foreland Basins of Assam and Bangladesh: Erosional History of the Eastern Himalayas and the Indo-Burman Ranges, http://dx.doi.org/10.1016/S0070-4571(07)58032-5
,2024, 'Solar Perovskite Technologies', in Encyclopedia of Sustainable Technologies, Elsevier, pp. 26 - 38, http://dx.doi.org/10.1016/b978-0-323-90386-8.00015-2
,2021, 'Organic solar cells', in Comprehensive Guide on Organic and Inorganic Solar Cells Fundamental Concepts to Fabrication Methods, pp. 25 - 55, http://dx.doi.org/10.1016/B978-0-323-85529-7.00006-2
,2018, 'Perovskite solar cells', in Materials and Energy, World Scientific Publishing Co, pp. 285 - 367, http://dx.doi.org/10.1142/9789813239494_0009
,2013, 'Donor-Acceptor Interface and Conversion Efficiency', in Advances in Materials Science Research, Nova Science Pub Incorporated, pp. 149 - 174
,2013, 'Donor-Acceptor Interface and Conversion Efficiency', in Organic Solar Cells: New Research, Nova Science Publishers, Inc. Hauppauge, NY
,2013, 'Doping of Organic Electronic Materials', in Yu L (ed.), Doping: Properties, Mechanism and Applications, Nova Science Publishers, Inc. Hauppauge, New York, NY, pp. 1 - 49
,2012, 'Photovoltaic Devices', in Handbook of Research on Solar Energy Systems and Technologies, pp. 126 - 162
,2025, 'Progress and Challenges of Three-Dimensional/Two-Dimensional Bilayered Perovskite Solar Cells: A Critical Review', Nanomaterials, 15, pp. 876 - 876, http://dx.doi.org/10.3390/nano15120876
,2025, 'Enhancing the efficiency of non-fullerene organic solar cells by using a volatilizable solid additive system', Sustainable Energy and Fuels, 9, pp. 2109 - 2118, http://dx.doi.org/10.1039/d4se01240b
,2025, 'Evaluating different alkylammonium bromide passivation films to stabilize and enhance PV performance of perovskite solar cells', Solar Energy, 286, http://dx.doi.org/10.1016/j.solener.2024.113195
,2024, 'Halogenated Polycyclic Aromatic Hydrocarbon for Hole Selective Layer/Perovskite Interface Modification and Passivation for Efficient Perovskite-Organic Tandem Solar Cells with Record Fill Factor', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202400691
,2024, 'Defects passivation in chloride-iodide perovskite solar cell with chlorobenzylammonium halides', Solar Energy, 282, http://dx.doi.org/10.1016/j.solener.2024.112968
,2024, 'Stable and Lead-Safe Polyphenol-Encapsulated Perovskite Solar Cells', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202403057
,2024, 'Self-Formation of SnCl2 Passivation Layer on SnO2 Electron-Transport Layer in Chloride–Iodide-Based Perovskite Solar Cell', Advanced Energy and Sustainability Research, 5, http://dx.doi.org/10.1002/aesr.202400030
,2024, 'Comparative Analysis of the Stability and Performance of Double-, Triple-, and Quadruple-Cation Perovskite Solar Cells for Rooftop and Indoor Applications', Molecules, 29, http://dx.doi.org/10.3390/molecules29122758
,2024, 'Encapsulating perovskite solar cells for long-term stability and prevention of lead toxicity', Applied Physics Reviews, 11, http://dx.doi.org/10.1063/5.0197154
,2024, 'Solution-Processed Bilayered ZnO Electron Transport Layer for Efficient Inverted Non-Fullerene Organic Solar Cells', Nanomanufacturing, 4, pp. 81 - 98, http://dx.doi.org/10.3390/nanomanufacturing4020006
,2024, 'Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss', Solar Energy Materials and Solar Cells, 266, http://dx.doi.org/10.1016/j.solmat.2023.112655
,2023, 'Iris: Passive Visible Light Positioning Using Light Spectral Information', Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies, 7, http://dx.doi.org/10.1145/3610913
,2023, 'A review of progress and challenges in the research developments on organic solar cells', Materials Science in Semiconductor Processing, 163, http://dx.doi.org/10.1016/j.mssp.2023.107541
,2023, 'Recognizing Hand Gestures Using Solar Cells', IEEE Transactions on Mobile Computing, 22, pp. 4223 - 4235, http://dx.doi.org/10.1109/TMC.2022.3148143
,2023, 'Excited-state intramolecular proton transfer emitter for efficient violet-blue organic light-emitting diodes with hybridized local/charge transfer channel', Chemical Engineering Journal, 465, http://dx.doi.org/10.1016/j.cej.2023.142929
,2023, 'Progress and Challenges of Chloride–Iodide Perovskite Solar Cells: A Critical Review', Nanomanufacturing, 3, pp. 177 - 216, http://dx.doi.org/10.3390/nanomanufacturing3020012
,2023, 'Spectral-Loc: Indoor Localization Using Light Spectral Information', Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies, 7, http://dx.doi.org/10.1145/3580878
,2023, 'Impact of the bilayer electron transport layer in the donor acceptor bulk heterojunctions for improved inverted organic photovoltaic performance', Applied Surface Science, 612, http://dx.doi.org/10.1016/j.apsusc.2022.155669
,2023, 'Efficient monolithic perovskite-Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer', Energy and Environmental Science, 16, pp. 1223 - 1233, http://dx.doi.org/10.1039/d2ee04007g
,2022, 'Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses', Applied Energy, 328, http://dx.doi.org/10.1016/j.apenergy.2022.120208
,2022, 'Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling', Heliyon, 8, http://dx.doi.org/10.1016/j.heliyon.2022.e11380
,2022, 'Increased Efficiency of Organic Solar Cells by Seeded Control of the Molecular Morphology in the Active Layer', Solar Rrl, 6, http://dx.doi.org/10.1002/solr.202200184
,2022, 'Progress and Challenges of SnO2 Electron Transport Layer for Perovskite Solar Cells: A Critical Review', Solar Rrl, 6, http://dx.doi.org/10.1002/solr.202100983
,2022, 'Defects and stability of perovskite solar cells: A critical analysis', Materials Chemistry Frontiers, 6, pp. 400 - 417, http://dx.doi.org/10.1039/d1qm01250a
,2021, 'Stability Issues of Perovskite Solar Cells: A Critical Review', Energy Technology, 9, http://dx.doi.org/10.1002/ente.202100560
,2021, 'Progress in Semitransparent Organic Solar Cells', Solar Rrl, 5, http://dx.doi.org/10.1002/solr.202100041
,2021, 'Ternary organic solar cells based on non-fullerene acceptors: A review', Organic Electronics, 90, http://dx.doi.org/10.1016/j.orgel.2021.106063
,2020, 'Optimising non-patterned MoO3/Ag/MoO3 anode for high-performance semi-transparent organic solar cells towards window applications', Nanomaterials, 10, pp. 1 - 11, http://dx.doi.org/10.3390/nano10091759
,2020, 'Thiocyanate assisted nucleation for high performance mix-cation perovskite solar cells with improved stability', Journal of Power Sources, 466, http://dx.doi.org/10.1016/j.jpowsour.2020.228320
,2020, 'Balance between Energy Transfer and Exciton Separation in Ternary Organic Solar Cells with Two Conjugated Polymer Donors', ACS Applied Energy Materials, 3, pp. 5792 - 5803, http://dx.doi.org/10.1021/acsaem.0c00740
,2020, 'Burn-In Degradation Mechanism Identified for Small Molecular Acceptor-Based High-Efficiency Nonfullerene Organic Solar Cells', ACS Applied Materials and Interfaces, 12, pp. 27433 - 27442, http://dx.doi.org/10.1021/acsami.0c05978
,2020, 'Progress in Stability of Organic Solar Cells', Advanced Science, 7, http://dx.doi.org/10.1002/advs.201903259
,2020, 'The Air Effect in the Burn-In Thermal Degradation of Nonfullerene Organic Solar Cells', Energy Technology, 8, http://dx.doi.org/10.1002/ente.201901401
,2020, 'Small molecular material as an interfacial layer in hybrid inverted structure perovskite solar cells', Materials Science in Semiconductor Processing, 108, http://dx.doi.org/10.1016/j.mssp.2019.104908
,2020, 'Thermal annealing dependent dielectric properties and energetic disorder in PffBT4T-2OD based organic solar cells', Materials Science in Semiconductor Processing, 105, http://dx.doi.org/10.1016/j.mssp.2019.104750
,2020, 'Trade-Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6-Sensitized Nonfullerene Ternary Organic Solar Cells', Energy Technology, 8, http://dx.doi.org/10.1002/ente.201900924
,2020, 'Trendsetters in High-Efficiency Organic Solar Cells: Toward 20% Power Conversion Efficiency', Solar Rrl, 4, http://dx.doi.org/10.1002/solr.201900342
,2020, 'High-Efficiency Nonfullerene Organic Solar Cells Enabled by Atomic Layer Deposited Zirconium-Doped Zinc Oxide', Solar RRL, 4, pp. 2000241 - 2000241, http://dx.doi.org/10.1002/solr.202000241
,2020, 'Interface Modification Enabled by Atomic Layer Deposited Ultra-Thin Titanium Oxide for High-Efficiency and Semitransparent Organic Solar Cells', Solar RRL, 4, pp. 2000497 - 2000497, http://dx.doi.org/10.1002/solr.202000497
,2019, 'Optimisation of annealing temperature for low temperature processed inverted structure Caesium Formamidinium Lead Triiodide perovskite solar cells', Materials Science in Semiconductor Processing, 102, http://dx.doi.org/10.1016/j.mssp.2019.06.015
,2019, 'Solution-processed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell', Electrochimica Acta, 319, pp. 349 - 358, http://dx.doi.org/10.1016/j.electacta.2019.06.134
,2019, 'Non-Fullerene-Derivative-Dependent Dielectric Properties in High-Performance Ternary Organic Solar Cells', IEEE Journal of Photovoltaics, 9, pp. 1031 - 1039, http://dx.doi.org/10.1109/JPHOTOV.2019.2908789
,