ORCID as entered in ROS

Select Publications
2024, 'Impacts of the Indian Ocean on regional and global climate', in Indian Ocean and Its Role in the Global Climate System, Elsevier, pp. 145 - 168, http://dx.doi.org/10.1016/B978-0-12-822698-8.00018-4
,2020, 'ENSO Atmospheric Teleconnections', in , Wiley, pp. 309 - 335, http://dx.doi.org/10.1002/9781119548164.ch14
,2020, 'ENSO Atmospheric Teleconnections', in Geophysical Monograph Series, pp. 311 - 335, http://dx.doi.org/10.1002/9781119548164.ch14
,2008, 'Climatologia dos parametros de superficie marinha da regiao sudeste da costa brasileira: enfase na regiao de Sao Sebastiao', in Vanin AMSP (ed.), Oceanografia de um Ecossistema Subtropical: Plataforma de Sao Sebastiao, SP, EDUSP, Sao Paulo SP, pp. 41 - 58
,2006, 'Climatologia na regiao entre o Cabo de Sao Tome (RJ) e o Chui (RS), Diagnostico para os periodos relativos aos levantamentos pesqueiros do Programa Revizee', in Rossi Wongtschowski CLDB; Madureira LS-P (ed.), O Ambiente Oceanografico da Plataforma Continental e do Talude na Regiao Sudeste-Sul do Brasil, EDUSP, Brazil, pp. 121 - 160
,2025, 'Physical mechanisms of meteorological drought development, intensification and termination: an Australian review', Communications Earth and Environment, 6, http://dx.doi.org/10.1038/s43247-025-02179-3
,2025, 'The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)', Geoscientific Model Development, 18, pp. 2587 - 2608, http://dx.doi.org/10.5194/gmd-18-2587-2025
,2025, 'Increasing Fire Weather Season Overlap Between North America and Australia Challenges Firefighting Cooperation', Earth S Future, 13, http://dx.doi.org/10.1029/2024EF005030
,2025, 'Links between hail hazard and climate modes of variability across Australia', Quarterly Journal of the Royal Meteorological Society, http://dx.doi.org/10.1002/qj.4985
,2024, 'How well do climate modes explain precipitation variability?', Npj Climate and Atmospheric Science, 7, http://dx.doi.org/10.1038/s41612-024-00853-5
,2024, 'Probabilistic analysis of drought impact on wheat yield and climate change implications', Weather and Climate Extremes, 45, http://dx.doi.org/10.1016/j.wace.2024.100708
,2024, 'Changes in moisture sources contributed to the onset and development of the 2017-2019 southeast Australian drought', Weather and Climate Extremes, 44, pp. 100672, http://dx.doi.org/10.1016/j.wace.2024.100672
,2024, 'Australian Rainfall Increases During Multi-Year La Niña', Geophysical Research Letters, 51, http://dx.doi.org/10.1029/2023GL106939
,2024, 'Combined Impacts of Southern Annular Mode and Zonal Wave 3 on Antarctic Sea Ice Variability', Journal of Climate, 37, pp. 1759 - 1775, http://dx.doi.org/10.1175/JCLI-D-23-0516.1
,2024, 'Australia’s Tinderbox Drought: An extreme natural event likely worsened by human-caused climate change', Science Advances, 10, http://dx.doi.org/10.1126/sciadv.adj3460
,2024, 'Understanding Biases in Indian Ocean Seasonal SST in CMIP6 Models', Journal of Geophysical Research Oceans, 129, http://dx.doi.org/10.1029/2023JC020330
,2024, 'Editorial: Pacific multi-decadal variability and Enso impact on South American climate', Frontiers in Earth Science, 12, pp. 1430406, http://dx.doi.org/10.3389/feart.2024.1430406
,2024, 'Evaluation of seasonal teleconnections to remote drivers of Australian rainfall in CMIP5 and CMIP6 models', JOURNAL OF SOUTHERN HEMISPHERE EARTH SYSTEMS SCIENCE, 74, http://dx.doi.org/10.1071/ES23002_CO
,2023, 'Mechanisms of tropical Pacific decadal variability', Nature Reviews Earth and Environment, 4, pp. 754 - 769, http://dx.doi.org/10.1038/s43017-023-00486-x
,2023, 'Coupled Feedbacks From the Tropical Pacific to the Atlantic Meridional Overturning Circulation', Geophysical Research Letters, 50, http://dx.doi.org/10.1029/2023GL103250
,2023, 'Evaluation of seasonal teleconnections to remote drivers of Australian rainfall in CMIP5 and CMIP6 models', Journal of Southern Hemisphere Earth Systems Science, 73, pp. 219 - 261, http://dx.doi.org/10.1071/ES23002
,2023, 'Linking ENSO to Synoptic Weather Systems in Eastern Australia', Geophysical Research Letters, 50, http://dx.doi.org/10.1029/2023GL104814
,2023, 'Global climate teleconnections into and out of the North Atlantic Ocean', , http://dx.doi.org/10.5194/egusphere-egu23-10569
,2023, 'Reduced moisture sources contributed to the 2017-2019 southeast Australian drought', , http://dx.doi.org/10.5194/egusphere-egu23-4681
,2023, 'Editorial: Dynamics and impacts of tropical climate variability: Understanding trends and future projections', Frontiers in Climate, 5, pp. 1148145, http://dx.doi.org/10.3389/fclim.2023.1148145
,2022, 'Climate and agricultural risk: Assessing the impacts of major climate drivers on Australian cotton production', European Journal of Agronomy, 140, http://dx.doi.org/10.1016/j.eja.2022.126604
,2022, 'Increasing dominance of Indian Ocean variability impacts Australian wheat yields', Nature Food, 3, pp. 862 - 870, http://dx.doi.org/10.1038/s43016-022-00613-9
,2022, 'Mid-Pliocene El Niño/Southern Oscillation suppressed by Pacific intertropical convergence zone shift', Nature Geoscience, 15, pp. 726 - 734, http://dx.doi.org/10.1038/s41561-022-00999-y
,2022, 'Reduced ENSO Variability due to a Collapsed Atlantic Meridional Overturning Circulation', Journal of Climate, 35, pp. 5307 - 5320, http://dx.doi.org/10.1175/JCLI-D-21-0293.1
,2022, 'Pacific Equatorial Undercurrent: Mean state, sources, and future changes across models', Frontiers in Climate, 4, http://dx.doi.org/10.3389/fclim.2022.933091
,2022, 'Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation', Nature Climate Change, 12, pp. 558 - 565, http://dx.doi.org/10.1038/s41558-022-01380-y
,2022, 'Phase Coherence Between Surrounding Oceans Enhances Precipitation Shortages in Northeast Brazil', Geophysical Research Letters, 49, http://dx.doi.org/10.1029/2021GL097647
,2022, 'The Impact of Interacting Climate Modes on East Australian Precipitation Moisture Sources', Journal of Climate, 35, pp. 3147 - 3159, http://dx.doi.org/10.1175/JCLI-D-21-0750.1
,2021, 'Future changes to the upper ocean Western Boundary Currents across two generations of climate models', Scientific Reports, 11, pp. 9538, http://dx.doi.org/10.1038/s41598-021-88934-w
,2021, 'Changing El Niño–Southern Oscillation in a warming climate', Nature Reviews Earth and Environment, 2, pp. 628 - 644, http://dx.doi.org/10.1038/s43017-021-00199-z
,2021, 'Nonlinearity in the Pathway of El Ninõ-Southern Oscillation to the Tropical North Atlantic', Journal of Climate, 34, pp. 7277 - 7296, http://dx.doi.org/10.1175/JCLI-D-20-0952.1
,2021, 'CMIP5 Intermodel Relationships in the Baseline Southern Ocean Climate System and With Future Projections', Earth's Future, 9, http://dx.doi.org/10.1029/2020EF001873
,2021, 'Land-sea temperature contrasts at the Last Interglacial and their impact on the hydrological cycle', Climate of the Past, 17, pp. 869 - 885, http://dx.doi.org/10.5194/cp-17-869-2021
,2021, 'What Determines the Lagged ENSO Response in the South-West Indian Ocean?', Geophysical Research Letters, 48, http://dx.doi.org/10.1029/2020GL091958
,2021, 'Non-linearity in the pathway of El Niño-Southern Oscillation to the tropical North Atlantic', , http://dx.doi.org/10.5194/egusphere-egu21-7483
,2021, 'Warming of the Indian Ocean weakens the Atlantic Niño - El Niño Southern Oscillation connection ', , http://dx.doi.org/10.5194/egusphere-egu21-13911
,2021, 'An Automated Climatology of Cool-Season Cutoff Lows over Southeastern Australia and Relationships with the Remote Climate Drivers', Monthly Weather Review, 149, pp. 4167 - 4181, http://dx.doi.org/10.1175/MWR-D-21-0142.1
,2021, 'Northward ITCZ shift drives reduced ENSO activity in the Mid-Pliocene Warm Period', , http://dx.doi.org/10.21203/rs.3.rs-402220/v1
,2020, 'Drier tropical and subtropical Southern Hemisphere in the mid-Pliocene Warm Period', Scientific Reports, 10, pp. 13458, http://dx.doi.org/10.1038/s41598-020-68884-5
,2020, 'Drivers and impacts of the most extreme marine heatwaves events', Scientific Reports, 10, pp. 19359, http://dx.doi.org/10.1038/s41598-020-75445-3
,2020, 'Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO', Scientific Reports, 10, pp. 11500, http://dx.doi.org/10.1038/s41598-020-68268-9
,2020, 'Revisiting remote drivers of the 2014 drought in South-Eastern Brazil', Climate Dynamics, 55, pp. 3197 - 3211, http://dx.doi.org/10.1007/s00382-020-05442-9
,2020, 'Weak Southern Hemispheric monsoons during the Last Interglacial period', , http://dx.doi.org/10.5194/cp-2020-149
,2020, 'Intermodel CMIP5 relationships in the baseline Southern Ocean climate system and with future projections', , http://dx.doi.org/10.1002/essoar.10504633.1
,2020, 'Temperature and precipitation responses to El Niño-Southern Oscillation in a hierarchy of datasets with different levels of observational constraints', Climate Dynamics, 55, pp. 2351 - 2376, http://dx.doi.org/10.1007/s00382-020-05389-x
,