ORCID as entered in ROS

Select Publications
2022, 'Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells', Applied Catalysis B Environmental, 302, http://dx.doi.org/10.1016/j.apcatb.2021.120860
,2022, 'Ultrathick MoS2 Films with Exceptionally High Volumetric Capacitance', Advanced Energy Materials, 12, http://dx.doi.org/10.1002/aenm.202103394
,2022, 'Promoting CO2 Electroreduction Kinetics on Atomically Dispersed Monovalent ZnI Sites by Rationally Engineering Proton‐Feeding Centers', Angewandte Chemie, 134, http://dx.doi.org/10.1002/ange.202111683
,2022, 'Promoting CO2 Electroreduction Kinetics on Atomically Dispersed Monovalent ZnI Sites by Rationally Engineering Proton-Feeding Centers', Angewandte Chemie International Edition, 61, http://dx.doi.org/10.1002/anie.202111683
,2022, 'Sublayer-enhanced atomic sites of single atom catalysts through in situ atomization of metal oxide nanoparticles†', Energy and Environmental Science, 15, pp. 1183 - 1191, http://dx.doi.org/10.1039/d1ee03311e
,2022, 'Carboxylated carbon nanotubes with high electrocatalytic activity for oxygen evolution in acidic conditions', Infomat, 4, http://dx.doi.org/10.1002/inf2.12273
,2022, 'Charge transfer of carbon nanomaterials for efficient metal-free electrocatalysis', Interdisciplinary Materials, 1, pp. 28 - 50, http://dx.doi.org/10.1002/idm2.12010
,2022, 'Polymer Solar Cells with 18.74% Efficiency: From Bulk Heterojunction to Interdigitated Bulk Heterojunction', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202108797
,2022, 'Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays', Chemical Engineering Journal, 427, http://dx.doi.org/10.1016/j.cej.2021.131498
,2022, 'Front Cover Image', InfoMat, 4, http://dx.doi.org/10.1002/inf2.12300
,2021, 'Carbon-Based Metal-Free Electrocatalysts: Past, Present, and Future', Accounts of Materials Research, 2, pp. 1239 - 1250, http://dx.doi.org/10.1021/accountsmr.1c00190
,2021, 'Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage', Communications Biology, 4, http://dx.doi.org/10.1038/s42003-021-01713-1
,2021, 'Understanding of catalytic ROS generation from defect-rich graphene quantum-dots for therapeutic effects in tumor microenvironment', Journal of Nanobiotechnology, 19, http://dx.doi.org/10.1186/s12951-021-01053-6
,2021, 'Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries†', Inorganic Chemistry Frontiers, 9, pp. 1058 - 1069, http://dx.doi.org/10.1039/d1qi01105g
,2021, 'Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis', Chemical Society Reviews, 50, pp. 11785 - 11843, http://dx.doi.org/10.1039/d1cs00219h
,2021, 'Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement', Nano Research, 14, pp. 3329 - 3336, http://dx.doi.org/10.1007/s12274-021-3358-3
,2021, 'High-Performance Hierarchical MnO2/CNT Electrode for Multifunctional Supercapacitors', Carbon, http://dx.doi.org/10.1016/j.carbon.2021.08.051
,2021, 'Topological Defect-Rich Carbon as a Metal-Free Cathode Catalyst for High-Performance Li-CO2 Batteries', Advanced Energy Materials, 11, http://dx.doi.org/10.1002/aenm.202101390
,2021, 'Designing Undercoordinated Ni-Nxand Fe-Nxon Holey Graphene for Electrochemical CO2Conversion to Syngas', ACS Nano, 15, pp. 12006 - 12018, http://dx.doi.org/10.1021/acsnano.1c03293
,2021, 'Earth-abundant metal-free carbon-based electrocatalysts for Zn-air batteries to power electrochemical generation of H2O2 for in-situ wastewater treatment', Chemical Engineering Journal, 416, http://dx.doi.org/10.1016/j.cej.2020.128338
,2021, 'Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems', ACS Energy Letters, 6, pp. 2460 - 2468, http://dx.doi.org/10.1021/acsenergylett.1c00936
,2021, 'Plasma-induced moieties impart super-efficient activity to hydrogen evolution electrocatalysts', Nano Energy, 85, http://dx.doi.org/10.1016/j.nanoen.2021.106030
,2021, 'Editorial: Covid-19: Materials Science and Engineering Challenges', Frontiers in Materials, 8, http://dx.doi.org/10.3389/fmats.2021.708684
,2021, 'Proton Capture Strategy for Enhancing Electrochemical CO2 Reduction on Atomically Dispersed Metal–Nitrogen Active Sites**', Angewandte Chemie, 133, pp. 12066 - 12072, http://dx.doi.org/10.1002/ange.202100011
,2021, 'Proton Capture Strategy for Enhancing Electrochemical CO2 Reduction on Atomically Dispersed Metal–Nitrogen Active Sites**', Angewandte Chemie International Edition, 60, pp. 11959 - 11965, http://dx.doi.org/10.1002/anie.202100011
,2021, 'Off/on switchable smart electromagnetic interference shielding aerogel', Matter, 4, pp. 1735 - 1747, http://dx.doi.org/10.1016/j.matt.2021.02.022
,2021, 'Electrocatalysis for CO2conversion: From fundamentals to value-added products', Chemical Society Reviews, 50, pp. 4993 - 5061, http://dx.doi.org/10.1039/d0cs00071j
,2021, 'Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites', Angewandte Chemie International Edition, 60, pp. 9078 - 9085, http://dx.doi.org/10.1002/anie.202100526
,2021, 'Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single‐Atomic Iron Sites', Angewandte Chemie, 133, pp. 9160 - 9167, http://dx.doi.org/10.1002/ange.202100526
,2021, 'Indirect surpassing CO2 utilization in membrane-free CO2 battery', Nano Energy, 82, http://dx.doi.org/10.1016/j.nanoen.2020.105741
,2021, 'Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage', Energy and Environmental Science, 14, pp. 1854 - 1896, http://dx.doi.org/10.1039/d0ee03167d
,2021, 'Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction', Nano Energy, 82, http://dx.doi.org/10.1016/j.nanoen.2020.105689
,2021, 'Structural Engineering of Ultrathin ReS2on Hierarchically Architectured Graphene for Enhanced Oxygen Reduction', ACS Nano, 15, pp. 5560 - 5566, http://dx.doi.org/10.1021/acsnano.1c00420
,2021, 'Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage', Cell Reports Physical Science, 2, http://dx.doi.org/10.1016/j.xcrp.2021.100328
,2021, 'Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2', Carbon, 172, pp. 272 - 282, http://dx.doi.org/10.1016/j.carbon.2020.10.025
,2021, 'High-performance metal-iodine batteries enabled by a bifunctional dendrite-free Li-Na alloy anode', Journal of Materials Chemistry A, 9, pp. 538 - 545, http://dx.doi.org/10.1039/d0ta08072a
,2021, 'Non-N-Doped Carbons as Metal-Free Electrocatalysts', Advanced Sustainable Systems, 5, http://dx.doi.org/10.1002/adsu.202000134
,2021, 'Topological Defect‐Rich Carbon as a Metal‐Free Cathode Catalyst for High‐Performance Li‐CO2 Batteries (Adv. Energy Mater. 30/2021)', Advanced Energy Materials, 11, http://dx.doi.org/10.1002/aenm.202170120
,2020, 'Porous Graphene Oxide Films Prepared via the Breath-Figure Method: A Simple Strategy for Switching Access of Redox Species to an Electrode Surface', ACS Applied Materials and Interfaces, 12, pp. 55181 - 55188, http://dx.doi.org/10.1021/acsami.0c16811
,2020, 'Metal-free photo- And electro-catalysts for hydrogen evolution reaction', Journal of Materials Chemistry A, 8, pp. 23674 - 23698, http://dx.doi.org/10.1039/d0ta08704a
,2020, 'Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites', Energy Storage Materials, 33, pp. 309 - 328, http://dx.doi.org/10.1016/j.ensm.2020.07.024
,2020, 'Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities', Energy and Environmental Science, 13, pp. 4536 - 4563, http://dx.doi.org/10.1039/d0ee02800b
,2020, 'Recent advances in flexible/stretchable batteries and integrated devices', Energy Storage Materials, 33, pp. 116 - 138, http://dx.doi.org/10.1016/j.ensm.2020.07.003
,2020, 'Transforming active sites in nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO', Nano Energy, 78, http://dx.doi.org/10.1016/j.nanoen.2020.105213
,2020, 'Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity', ACS Energy Letters, 5, pp. 3560 - 3568, http://dx.doi.org/10.1021/acsenergylett.0c01858
,2020, 'Author Correction: Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage (Nature Nanotechnology, (2014), 9, 7, (555-562), 10.1038/nnano.2014.93)', Nature Nanotechnology, 15, pp. 811, http://dx.doi.org/10.1038/s41565-020-0718-1
,2020, 'TpyCo2+-Based Coordination Polymers by Water-Induced Gelling Trigged Efficient Oxygen Evolution Reaction', Advanced Functional Materials, 30, http://dx.doi.org/10.1002/adfm.202000593
,2020, 'Hole-punching for enhancing electrocatalytic activities of 2D graphene electrodes: Less is more', Journal of Chemical Physics, 153, http://dx.doi.org/10.1063/5.0012709
,2020, 'Targeted Defect Synthesis for Improved Electrocatalytic Performance', Chem, 6, pp. 1849 - 1851, http://dx.doi.org/10.1016/j.chempr.2020.07.018
,2020, 'A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes', Nanoscale, 12, pp. 14615 - 14625, http://dx.doi.org/10.1039/d0nr03378b
,