ORCID as entered in ROS

Select Publications
2015, 'In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries', Chemsuschem, 8, pp. 2826 - 2853, http://dx.doi.org/10.1002/cssc.201500152
,2015, 'In Situ Neutron Powder Diffraction of Li6C60 for Hydrogen Storage', Journal of Physical Chemistry C, 119, pp. 19715 - 19721, http://dx.doi.org/10.1021/acs.jpcc.5b06711
,2015, 'The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 during High Rate Charge/Discharge: A Sodium-Centred Perspective', Advanced Functional Materials, 25, pp. 4994 - 5005, http://dx.doi.org/10.1002/adfm.201501655
,2015, 'The use of deuterated ethyl acetate in highly concentrated electrolyte as a low-cost solvent for in situ neutron diffraction measurements of Li-ion battery electrodes', Electrochimica Acta, 174, pp. 417 - 423, http://dx.doi.org/10.1016/j.electacta.2015.05.169
,2015, 'In situ neutron diffraction monitoring of Li7La3Zr2O12 formation: Toward a rational synthesis of garnet solid electrolytes.', Chemistry of Materials, 27, pp. 2903 - 2910, http://dx.doi.org/10.1021/acs.chemmater.5b00149
,2015, 'Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries', Chemistry of Materials, 27, pp. 3150 - 3158, http://dx.doi.org/10.1021/acs.chemmater.5b00943
,2015, 'Graphene and Selected Derivatives as Negative Electrodes in Sodium- and Lithium-Ion Batteries', Chemelectrochem, 2, pp. 600 - 610, http://dx.doi.org/10.1002/celc.201402352
,2015, 'Structural evolution of electrodes in the NCR and CGR cathode-containing commercial lithium-ion batteries cycled between 3.0 and 4.5 V: An operando neutron powder-diffraction study', Journal of Materials Research, 30, pp. 373 - 380, http://dx.doi.org/10.1557/jmr.2014.297
,2015, 'Using in situ synchrotron X-ray diffraction to study lithium-and sodium-ion batteries: A case study with an unconventional battery electrode (Gd2TiO5)', Journal of Materials Research, 30, pp. 381 - 389, http://dx.doi.org/10.1557/jmr.2014.311
,2015, 'A comprehensive picture of the current rate dependence of the structural evolution of P2-Na2/3Fe2/3Mn1/3O2', Journal of Materials Chemistry A, 3, pp. 21023 - 21038, http://dx.doi.org/10.1039/c5ta04976h
,2015, 'Ammonia-storage in lithium intercalated fullerides', Journal of Materials Chemistry A, 3, pp. 21099 - 21105, http://dx.doi.org/10.1039/c5ta05226b
,2015, 'Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method', Rsc Advances, 5, pp. 29535 - 29544, http://dx.doi.org/10.1039/c5ra00206k
,2015, 'Structural evolution of mixed valent (V3+/V4+) and V4+ sodium vanadium fluorophosphates as cathodes in sodium-ion batteries: Comparisons, overcharging and mid-term cycling', Journal of Materials Chemistry A, 3, pp. 23017 - 23027, http://dx.doi.org/10.1039/c5ta03780h
,2015, 'ChemInform Abstract: In situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries', ChemInform, 46, http://dx.doi.org/10.1002/chin.201543222
,2015, 'ChemInform Abstract: Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium‐Ion Battery Anode Material.', ChemInform, 46, http://dx.doi.org/10.1002/chin.201510018
,2015, 'InSitu Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries', ChemSusChem, http://dx.doi.org/10.1002/cssc.201500152
,2014, 'Synthetic, structural, and electrochemical study of monoclinic Na4Ti5O12 as a sodium-ion battery anode material', Chemistry of Materials, 26, pp. 7067 - 7072, http://dx.doi.org/10.1021/cm5035358
,2014, 'Carbon coated Na7Fe7(PO4) 6F3: A novel intercalation cathode for sodium-ion batteries', Journal of Power Sources, 271, pp. 497 - 503, http://dx.doi.org/10.1016/j.jpowsour.2014.08.039
,2014, 'Comparison of the so-called CGR and NCR cathodes in commercial lithium-ion batteries using in situ neutron powder diffraction', Powder Diffraction, 29, pp. S35 - S39, http://dx.doi.org/10.1017/S088571561400102X
,2014, 'Structure of the Li4Ti5O12 anode during charge-discharge cycling', Powder Diffraction, 29, pp. S59 - S63, http://dx.doi.org/10.1017/S0885715614001067
,2014, '<em>In Situ</em> Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries', Journal of Visualized Experiments, http://dx.doi.org/10.3791/52284-v
,2014, 'In situ neutron powder diffraction using custom-made lithium-ion batteries', Journal of Visualized Experiments, http://dx.doi.org/10.3791/52284
,2014, 'Kinetics of the thermally-induced structural rearrangement of γ-MnO2', Journal of Physical Chemistry C, 118, pp. 24257 - 24265, http://dx.doi.org/10.1021/jp506914j
,2014, 'Sodium uptake in cell construction and subsequent in operando electrode behaviour of Prussian blue analogues, Fe[Fe(CN)6]1-x·yH2O and FeCo(CN)6', Physical Chemistry Chemical Physics, 16, pp. 24178 - 24187, http://dx.doi.org/10.1039/c4cp02676d
,2014, 'Mechanistic and structural investigation of LixMnO2 cathodes during cycling in Li-ion batteries', Electrochimica Acta, 137, pp. 736 - 743, http://dx.doi.org/10.1016/j.electacta.2014.06.059
,2014, 'Discharge mechanism of the heat treated electrolytic manganese dioxide cathode in a primary Li/MnO2 battery: An in-situ and ex-situ synchrotron X-ray diffraction study', Journal of Power Sources, 258, pp. 155 - 163, http://dx.doi.org/10.1016/j.jpowsour.2014.01.102
,2014, 'High Voltage Na3V2O2x(PO4)2F3-2x (0≤x≤1) Positive Electrode Materials for Na-Ion Batteries', ECS Meeting Abstracts, MA2014-04, pp. 340 - 340, http://dx.doi.org/10.1149/ma2014-04/2/340
,2014, 'Sodium distribution and reaction mechanisms of a Na3V 2O2(PO4)2F electrode during use in a sodium-ion battery', Chemistry of Materials, 26, pp. 3391 - 3402, http://dx.doi.org/10.1021/cm5005104
,2014, 'Structural evolution of high energy density V3+/V4+ mixed valent Na3V2O2x(PO4) 2F3-2x (x = 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction', Journal of Materials Chemistry A, 2, pp. 7766 - 7779, http://dx.doi.org/10.1039/c4ta00773e
,2014, 'Li2MnSiO4 cathodes modified by phosphorous substitution and the structural consequences', Solid State Ionics, 259, pp. 29 - 39, http://dx.doi.org/10.1016/j.ssi.2014.02.002
,2014, 'Local structural changes in LiMn1.5Ni0.5O4 spinel cathode material for lithium-ion batteries', Journal of Power Sources, 255, pp. 439 - 449, http://dx.doi.org/10.1016/j.jpowsour.2014.01.037
,2014, 'Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction', Chemistry of Materials, 26, pp. 2318 - 2326, http://dx.doi.org/10.1021/cm5002779
,2014, 'Evidence of solid-solution reaction upon lithium insertion into cryptomelane K0.25Mn2O4 material', Journal of Physical Chemistry C, 118, pp. 3976 - 3983, http://dx.doi.org/10.1021/jp411687n
,2014, 'Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2-x)TiO5 series', Journal of Solid State Chemistry, 213, pp. 182 - 192, http://dx.doi.org/10.1016/j.jssc.2014.02.029
,2014, 'In situ experimentation with batteries using neutron and synchrotron X-ray diffraction', Ceramic Transactions, 246, pp. 167 - 179, http://dx.doi.org/10.1002/9781118771327.ch18
,2014, 'In situ neutron powder diffraction using custom-made lithium-ion batteries', Journal of visualized experiments : JoVE, pp. e52284, http://dx.doi.org/10.3791/52284
,2014, 'In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi0.5Mn1.5O4 cathode and a Li 4Ti5O12 anode in a LiNi0.5Mn 1.5O4∥Li4Ti5O12 full cell', Journal of Power Sources, 246, pp. 464 - 472, http://dx.doi.org/10.1016/j.jpowsour.2013.07.114
,2014, 'Kinetics of the thermally-induced structural rearrangement of γ-MnO2', Journal of Physical Chemistry C, 118, pp. 24257 - 24265
,2014, 'Mass production of Li4Ti5O12 with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries', Rsc Advances, 4, pp. 38568 - 38574, http://dx.doi.org/10.1039/c4ra05178e
,2014, 'Preparation and electrochemical properties of high-capacity LiFePO 4-Li3V2(PO4)3/C composite for lithium-ion batteries', Journal of Power Sources, 246, pp. 912 - 917, http://dx.doi.org/10.1016/j.jpowsour.2013.08.047
,2013, 'Electrochemical Na Extraction/Insertion of Na3V2O2x(PO4)2F3-2x', Chemistry of Materials, 25, pp. 4917 - 4925, http://dx.doi.org/10.1021/cm403679b
,2013, 'High Performance Composite Lithium-Rich Nickel Manganese Oxide Cathodes for Lithium-Ion Batteries', Journal of the Electrochemical Society, 160, pp. A1856 - A1862, http://dx.doi.org/10.1149/2.093310jes
,2013, 'Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction', Solid State Ionics, 230, pp. 72 - 76, http://dx.doi.org/10.1016/j.ssi.2012.09.014
,2013, 'A simple electrochemical cell for in-situ fundamental structural analysis using synchrotron X-ray powder diffraction', Journal of Power Sources, 244, pp. 109 - 114, http://dx.doi.org/10.1016/j.jpowsour.2013.03.086
,2013, 'Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction', Electrochimica Acta, 101, pp. 79 - 85, http://dx.doi.org/10.1016/j.electacta.2012.09.101
,2013, 'A (3 + 3)-dimensional "hypercubic" oxide-ionic conductor: Type II Bi2O3-Nb2O5', Journal of the American Chemical Society, 135, pp. 6477 - 6484, http://dx.doi.org/10.1021/ja3109328
,2013, 'Expanding the Applications of the Ilmenite Mineral to the Preparation of Nanostructures: TiO2 Nanorods and their Photocatalytic Properties in the Degradation of Oxalic Acid', Chemistry - a European Journal, 19, pp. 1091 - 1096, http://dx.doi.org/10.1002/chem.201202451
,2013, 'Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction', Solid State Ionics, http://dx.doi.org/10.1016/j.ssi.2012.09.014
,2013, 'High capacity spherical Li[Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries', Solid State Ionics, 233, pp. 12 - 19, http://dx.doi.org/10.1016/j.ssi.2012.12.003
,2013, 'Non-equilibrium Structural Evolution of the Lithium-Rich Li1+yMn2O4 Cathode within a Battery', Chemistry of materials, In Press, http://dx.doi.org/10.1021/cm303851w
,