ORCID as entered in ROS

Select Publications
2021, 'Dopant and Current Rate Dependence on the Structural Evolution of P2-Na2/3Mn0.8Zn0.1M0.1O2 (M=Cu, Ti): An Operando Study', Chemistry Methods, 1, pp. 295 - 304, http://dx.doi.org/10.1002/cmtd.202000075
,2021, 'Sc1.5Al0.5W3O12Exhibits Zero Thermal Expansion between 4 and 1400 K', Chemistry of Materials, 33, pp. 3823 - 3831, http://dx.doi.org/10.1021/acs.chemmater.1c01007
,2021, 'Repurposing Waste Tires as Tunable Frameworks for Use in Sodium-Ion and Lithium-Sulfur Batteries', ACS Sustainable Chemistry and Engineering, 9, pp. 6972 - 6990, http://dx.doi.org/10.1021/acssuschemeng.1c00502
,2021, 'Sodium-ion battery anodes from carbon depositions', Electrochimica Acta, 379, http://dx.doi.org/10.1016/j.electacta.2021.138109
,2021, 'On the Electrochemical Phase Evolution of Anti-PbO-Type CoSe in Alkali Ion Batteries', Inorganic Chemistry, 60, pp. 7150 - 7160, http://dx.doi.org/10.1021/acs.inorgchem.1c00226
,2021, 'Fluorinated (Nano)Carbons: CF
2021, 'Electrochemical phase evolution of tetradymite-type Bi2Te3 in lithium, sodium and potassium ion half cells', Journal of Alloys and Compounds, 854, http://dx.doi.org/10.1016/j.jallcom.2020.155621
,2021, 'Biphasic P2/O3-Na2/3Li0.18Mn0.8Fe0.2O2: a structural investigation', Dalton Transactions, 50, pp. 1357 - 1365, http://dx.doi.org/10.1039/d0dt03351k
,2021, 'Biomass Derived High Areal and Specific Capacity Hard Carbon Anodes for Sodium-Ion Batteries', Energy and Fuels, 35, pp. 1820 - 1830, http://dx.doi.org/10.1021/acs.energyfuels.0c03741
,2020, 'Nanostructured LiMnO2 with Li3PO4 Integrated at the Atomic Scale for High-Energy Electrode Materials with Reversible Anionic Redox', ACS Central Science, 6, pp. 2326 - 2338, http://dx.doi.org/10.1021/acscentsci.0c01200
,2020, 'Probing the charged state of layered positive electrodes in sodium-ion batteries: Reaction pathways, stability and opportunities', Journal of Materials Chemistry A, 8, pp. 24833 - 24867, http://dx.doi.org/10.1039/d0ta09553b
,2020, 'Synthesis and characterization of polyvinylidene fluoride/magnesium bromide polymer electrolyte for magnesium battery application', Physica Scripta, 95, http://dx.doi.org/10.1088/1402-4896/abbcf4
,2020, 'Elucidation of the high-voltage phase in the layered sodium ion battery cathode material P3-Na0.5Ni0.25Mn0.75O2', Journal of Materials Chemistry A, 8, pp. 21151 - 21162, http://dx.doi.org/10.1039/d0ta06600a
,2020, 'High-performance NaVO3 with mixed cationic and anionic redox reactions for Na-ion battery applications', Chemistry of Materials, 32, pp. 8836 - 8844, http://dx.doi.org/10.1021/acs.chemmater.0c02244
,2020, 'Two-Phase Electrochemical Proton Transport and Storage in α-MoO3 for Proton Batteries', Cell Reports Physical Science, 1, http://dx.doi.org/10.1016/j.xcrp.2020.100225
,2020, 'Consequences of long-term water exposure for bulk crystal structure and surface composition/chemistry of nickel-rich layered oxide materials for Li-ion batteries', Journal of Power Sources, 470, pp. 228370, http://dx.doi.org/10.1016/j.jpowsour.2020.228370
,2020, 'Alkali Metal-Modified P2 NaxMnO2: Crystal Structure and Application in Sodium-Ion Batteries', Inorganic Chemistry, 59, pp. 12143 - 12155, http://dx.doi.org/10.1021/acs.inorgchem.0c01078
,2020, 'Novel structurally-stable Na-rich Na4V2O7cathode material with high reversible capacity by utilization of anion redox activity', Chemical Communications, 56, pp. 8245 - 8248, http://dx.doi.org/10.1039/d0cc02816a
,2020, 'Dual Polymer/Liquid Electrolyte with BaTiO3Electrode for Magnesium Batteries', ACS Applied Energy Materials, 3, pp. 5882 - 5892, http://dx.doi.org/10.1021/acsaem.0c00810
,2020, 'Pulsed Laser Deposition-based Thin Film Microbatteries', Chemistry - An Asian Journal, 15, pp. 1829 - 1847, http://dx.doi.org/10.1002/asia.202000384
,2020, 'Approaching Reactive KFePO4 Phase for Potassium Storage by Adopting an Advanced Design Strategy', Batteries and Supercaps, 3, pp. 450 - 455, http://dx.doi.org/10.1002/batt.201900170
,2020, 'Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material', Electrochimica Acta, 341, pp. 135978, http://dx.doi.org/10.1016/j.electacta.2020.135978
,2020, 'Controlling Spin Switching with Anionic Supramolecular Frameworks', Chemistry of Materials, 32, pp. 3229 - 3234, http://dx.doi.org/10.1021/acs.chemmater.0c00375
,2020, 'Recycling lithium-ion batteries: Adding value with multiple lives', Green Chemistry, 22, pp. 2244 - 2254, http://dx.doi.org/10.1039/d0gc00269k
,2020, 'In Situ Synchrotron XRD and sXAS Studies on Li-S Batteries with Ionic-Liquid and Organic Electrolytes', Journal of the Electrochemical Society, 167, pp. 100526, http://dx.doi.org/10.1149/1945-7111/ab98a8
,2020, 'Iron-Doped Sodium-Vanadium Fluorophosphates: Na3V2-yO2-yFey(PO4)2F1+ y (y < 0.3)', Inorganic Chemistry, 59, pp. 854 - 862, http://dx.doi.org/10.1021/acs.inorgchem.9b03111
,2019, 'Monitoring lead-acid battery function using operando neutron radiography', Journal of Power Sources, 438, http://dx.doi.org/10.1016/j.jpowsour.2019.226976
,2019, 'Exploration of the high temperature phase evolution of electrochemically modified Sc2(WO4)3: Via potassium discharge', Inorganic Chemistry Frontiers, 6, pp. 2718 - 2726, http://dx.doi.org/10.1039/c9qi00699k
,2019, 'Thermal Evolution and Phase Transitions in Electrochemically Activated Sc2(MoO4)3', Inorganic Chemistry, 58, pp. 9964 - 9973, http://dx.doi.org/10.1021/acs.inorgchem.9b01116
,2019, 'Na4Co3(PO4)2P2O7 through Correlative Operando X-ray Diffraction and Electrochemical Impedance Spectroscopy', Chemistry of Materials, 31, pp. 5152 - 5159, http://dx.doi.org/10.1021/acs.chemmater.9b01054
,2019, 'Chromium segregation in Cr-doped TiO2 (rutile): impact of oxygen activity', Ionics, 25, pp. 3363 - 3372, http://dx.doi.org/10.1007/s11581-018-2828-4
,2019, 'Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries', ACS Sustainable Chemistry and Engineering, 7, pp. 10310 - 10322, http://dx.doi.org/10.1021/acssuschemeng.9b00135
,2019, 'In situ neutron powder diffraction studies', Physical Sciences Reviews, 4, http://dx.doi.org/10.1515/psr-2018-0155
,2019, 'In situ studies: electrochemistry and scattering', Current Opinion in Electrochemistry, 15, pp. 18 - 26, http://dx.doi.org/10.1016/j.coelec.2019.03.011
,2019, 'In Situ Studies of Li/Cu-Doped Layered P2 NaxMnO2 Electrodes for Sodium-Ion Batteries', Small Methods, 3, http://dx.doi.org/10.1002/smtd.201800092
,2019, 'Rb/Cs-Modified P2 Na 0.7 Mn 0.8 Mg 0.2 O 2 : Application in Sodium-Ion Batteries', ACS Omega, 4, pp. 5784 - 5794, http://dx.doi.org/10.1021/acsomega.8b03351
,2019, 'Antimony-carbon nanocomposites for potassium-ion batteries: Insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability', Journal of Power Sources, 413, pp. 476 - 484, http://dx.doi.org/10.1016/j.jpowsour.2018.12.017
,2019, '(Invited) Can a “Battery” Only be Used as a “Battery” or Can We Do More?', ECS Meeting Abstracts, MA2019-03, pp. 59 - 59, http://dx.doi.org/10.1149/ma2019-03/1/59
,2019, 'Lithium Sulfur Batteries with Modified Electrolytes Containing Ionic Liquids', ECS Meeting Abstracts, MA2019-03, pp. 217 - 217, http://dx.doi.org/10.1149/ma2019-03/2/217
,2019, 'Structural Evolution and High-Voltage Structural Stability of Li(Ni x Mn y Co z )O 2 Electrodes', Chemistry of Materials, 31, pp. 376 - 386, http://dx.doi.org/10.1021/acs.chemmater.8b03525
,2019, 'Alkali-Metal Modification of Li(Ni0.33Mn0.33Co0.33)O2', Australian Journal of Chemistry, 72, pp. 600 - 606, http://dx.doi.org/10.1071/CH19114
,2019, 'Editorial: In-situ and in-operando techniques for material characterizations during battery operation', Frontiers in Energy Research, 7, pp. 00010, http://dx.doi.org/10.3389/fenrg.2019.00010
,2019, 'Electron microscopy and its role in advanced lithium-ion battery research', Sustainable Energy and Fuels, 3, pp. 1623 - 1646, http://dx.doi.org/10.1039/c9se00038k
,2019, 'Elucidation of structures and lithium environments for an organo-sulfur cathode', Physical Chemistry Chemical Physics, 21, pp. 18667 - 18679, http://dx.doi.org/10.1039/c9cp03057c
,2019, 'Exploring the rate dependence of phase evolution in P2-type Na2/3Mn0.8Fe0.1Ti0.1O2', Journal of Materials Chemistry A, 7, pp. 12115 - 12125, http://dx.doi.org/10.1039/c9ta01366k
,2019, 'High performance P2 sodium layered oxides: An in-depth study into the effect of rationally selected stoichiometry', Journal of Materials Chemistry A, 7, pp. 21812 - 21826, http://dx.doi.org/10.1039/c9ta07346a
,2019, 'Investigation of K modified P2 Na 0.7 Mn 0.8 Mg 0.2 O 2 as a cathode material for sodium-ion batteries', Crystengcomm, 21, pp. 172 - 181, http://dx.doi.org/10.1039/c8ce01532e
,2019, 'Mechanistic insights into the phenomena of increasing capacity with cycle number: Using pulsed-laser deposited MoO2 thin film electrodes', Physical Chemistry Chemical Physics, 21, pp. 25779 - 25787, http://dx.doi.org/10.1039/c9cp05718h
,2018, 'Solid State and Materials Chemistry for Sodium‐Ion Batteries', , pp. 1 - 36, http://dx.doi.org/10.1002/9781119951438.eibc2657
,2018, 'Hybrid Solid Polymer Electrolytes with Two-Dimensional Inorganic Nanofillers', Chemistry A European Journal, 24, pp. 18180 - 18203, http://dx.doi.org/10.1002/chem.201804781
,