ORCID as entered in ROS

Select Publications
2025, 'Effect of parasite infection and invasion history on feeding, growth, and energy allocation of cane toads', Biological Journal of the Linnean Society, 144, http://dx.doi.org/10.1093/biolinnean/blae054
,2025, 'Does a biological invasion modify host immune responses to parasite infection?', Royal Society Open Science, 12, http://dx.doi.org/10.1098/rsos.240669
,2025, 'Big-Hearted Invaders: The Impacts of Range Expansion and Parasite Infection on Heart Mass in Cane Toads', Integrative Zoology, http://dx.doi.org/10.1111/1749-4877.12941
,2025, 'Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina', Molecular Ecology, 34, http://dx.doi.org/10.1111/mec.17587
,2024, 'Live Fast, Die Young: Life History Traits of an Apex Predator Exacerbate the Ecological Impact of a Toxic Invader', Ecology and Evolution, 14, http://dx.doi.org/10.1002/ece3.70625
,2024, 'Repeat-Rich Regions Cause False-Positive Detection of NUMTs: A Case Study in Amphibians Using an Improved Cane Toad Reference Genome', Genome Biology and Evolution, 16, http://dx.doi.org/10.1093/gbe/evae246
,2024, 'Is developmental plasticity triggered by DNA methylation changes in the invasive cane toad (Rhinella marina)?', Ecology and Evolution, 14, http://dx.doi.org/10.1002/ece3.11127
,2024, 'Maternally derived avian corticosterone affects offspring genome-wide DNA methylation in a passerine species', Molecular Ecology, 33, http://dx.doi.org/10.1111/mec.17283
,2024, 'Whole-mitogenome analysis unveils previously undescribed genetic diversity in cane toads across their invasion trajectory', Ecology and Evolution, 14, http://dx.doi.org/10.1002/ece3.11115
,2024, 'A biological invasion modifies the dynamics of a host–parasite arms race', Proceedings of the Royal Society B Biological Sciences, 291, http://dx.doi.org/10.1098/rspb.2023.2403
,2024, 'Genetic and Phenotypic Consequences of Local Transitions between Sexual and Parthenogenetic Reproduction in the Wild', American Naturalist, 203, pp. 73 - 91, http://dx.doi.org/10.1086/727511
,2024, 'Genomic Tools in Biological Invasions: Current State and Future Frontiers', Genome Biology and Evolution, 16, http://dx.doi.org/10.1093/gbe/evad230
,2024, 'Population Genetics and Invasion History of the European Starling Across Aotearoa New Zealand', Molecular Ecology, http://dx.doi.org/10.1111/mec.17579
,2024, 'The genome of a globally invasive passerine, the common myna, Acridotheres tristis', DNA Research, 31, http://dx.doi.org/10.1093/dnares/dsae005
,2023, 'Correction to: Global invasion history and native decline of the common starling: insights through genetics (Biological Invasions, (2023), 25, 5, (1291-1316), 10.1007/s10530-022-02982-5)', Biological Invasions, 25, pp. 2713 - 2716, http://dx.doi.org/10.1007/s10530-023-03066-8
,2023, 'Hybridisation rates, population structure, and dispersal of sambar deer (Cervus unicolor) and rusa deer (Cervus timorensis) in south-eastern Australia', Wildlife Research, 50, pp. 669 - 687, http://dx.doi.org/10.1071/WR22129
,2023, 'Global invasion history and native decline of the common starling: insights through genetics', Biological Invasions, 25, pp. 1291 - 1316, http://dx.doi.org/10.1007/s10530-022-02982-5
,2023, 'Contrasting Patterns of Single Nucleotide Polymorphisms and Structural Variation Across Multiple Invasions', Molecular Biology and Evolution, 40, http://dx.doi.org/10.1093/molbev/msad046
,2023, 'Evolutionary genomics: Insights from the invasive European starlings', Frontiers in Genetics, 13, http://dx.doi.org/10.3389/fgene.2022.1010456
,2023, 'An epigenetic DNA methylation clock for age estimates in Indo-Pacific bottlenose dolphins (Tursiops aduncus)', Evolutionary Applications, 16, pp. 126 - 133, http://dx.doi.org/10.1111/eva.13516
,2023, 'Concurrent invasions of European starlings in Australia and North America reveal population-specific differentiation in shared genomic regions', Molecular Ecology, http://dx.doi.org/10.1111/mec.17195
,2023, 'Genetic analysis reveals spatial structure in an expanding introduced rusa deer population', Wildlife Research, 50, pp. 757 - 769, http://dx.doi.org/10.1071/wr22128
,2023, 'Origins and population genetics of sambar deer (Cervus unicolor) introduced to Australia and New Zealand', Wildlife Research, 50, pp. 716 - 727, http://dx.doi.org/10.1071/wr22120
,2022, 'Transcript- and annotation-guided genome assembly of the European starling', Molecular Ecology Resources, 22, pp. 3141 - 3160, http://dx.doi.org/10.1111/1755-0998.13679
,2022, 'Captivity induces large and population-dependent brain transcriptomic changes in wild-caught cane toads (Rhinella marina)', Molecular Ecology, 31, pp. 4949 - 4961, http://dx.doi.org/10.1111/mec.16633
,2022, 'Do female amphibians and reptiles have greater reproductive output if they have more mates?', Behavioral Ecology and Sociobiology, 76, http://dx.doi.org/10.1007/s00265-022-03194-6
,2022, 'Genetics and plasticity are responsible for climate induced ecogeographical patterns in a recent invasion', Frontiers in Genetics, http://dx.doi.org/10.3389/fgene.2022.824424
,2022, 'Brain transcriptome analysis reveals gene expression differences associated with dispersal behaviour between range-front and range-core populations of invasive cane toads in Australia', Molecular Ecology, 31, pp. 1700 - 1715, http://dx.doi.org/10.1111/mec.16347
,2022, 'Historical museum samples enable the examination of divergent and parallel evolution during invasion', Molecular Ecology, 31, pp. 1836 - 1852, http://dx.doi.org/10.1111/mec.16353
,2022, 'In an arms race between host and parasite, a lungworm's ability to infect a toad is determined by host susceptibility not parasite preference', Biology Letters, 18, http://dx.doi.org/10.1098/rsbl.2021.0552
,2021, 'Discovery of Novel Viruses Associated With the Invasive Cane Toad (Rhinella marina) in Its Native and Introduced Ranges', Frontiers in Microbiology, 12, http://dx.doi.org/10.3389/fmicb.2021.733631
,2021, 'Intergenerational effects of manipulating DNA methylation in the early life of an iconic invader', Philosophical Transactions of the Royal Society B Biological Sciences, 376, http://dx.doi.org/10.1098/rstb.2020.0125
,2021, 'Signatures of selection in a recent invasion reveal adaptive divergence in a highly vagile invasive species', Molecular Ecology, 30, pp. 1419 - 1434, http://dx.doi.org/10.1111/mec.15601
,2021, 'Communal roosting shows dynamics predicted by direct and indirect nepotism in chestnut-crowned babblers', Behavioral Ecology and Sociobiology, 75, http://dx.doi.org/10.1007/s00265-020-02958-2
,2021, 'Genetic similarity enhances the strength of the relationship between gut bacteria and host DNA methylation', , http://dx.doi.org/10.1101/2021.07.10.451923
,2021, 'Using historical museum samples to examine divergent and parallel evolution in the invasive starling', , http://dx.doi.org/10.1101/2021.08.22.457241
,2020, 'Do epigenetic changes drive corticosterone responses to alarm cues in larvae of an invasive Amphibian?', Integrative and Comparative Biology, 60, pp. 1481 - 1494, http://dx.doi.org/10.1093/icb/icaa082
,2020, 'Contrasting mitochondrial diversity of European starlings (Sturnus vulgaris) across three invasive continental distributions', Ecology and Evolution, 10, pp. 10186 - 10195, http://dx.doi.org/10.1002/ece3.6679
,2020, 'A comparison of nonlethal sampling methods for amphibian gut microbiome analyses', Molecular Ecology Resources, 20, pp. 844 - 855, http://dx.doi.org/10.1111/1755-0998.13139
,2020, 'The gut bacteria of an invasive amphibian respond to the dual challenges of range-expansion and parasite attack', , http://dx.doi.org/10.1101/2020.11.16.385690
,2019, 'Increased Adaptive Variation Despite Reduced Overall Genetic Diversity in a Rapidly Adapting Invader', Frontiers in Genetics, 10, http://dx.doi.org/10.3389/fgene.2019.01221
,2019, 'Immune and environment-driven gene expression during invasion: An eco-immunological application of RNA-Seq', Ecology and Evolution, 9, pp. 6708 - 6721, http://dx.doi.org/10.1002/ece3.5249
,2019, 'Extreme Competence: Keystone Hosts of Infections', Trends in Ecology and Evolution, 34, pp. 303 - 314, http://dx.doi.org/10.1016/j.tree.2018.12.009
,2018, 'Draft genome assembly of the invasive cane toad, Rhinella marina', Gigascience, 7, http://dx.doi.org/10.1093/gigascience/giy095
,2018, 'Viral discovery in the invasive Australian cane toad (Rhinella marina) using metatranscriptomic and genomic approaches', Journal of Virology, 92, http://dx.doi.org/10.1128/JVI.00768-18
,2018, 'Genetic diversity through time and space: diversity and demographic history from natural history specimens and serially sampled contemporary populations of the threatened Gouldian finch (Erythrura gouldiae)', Conservation Genetics, 19, pp. 737 - 754, http://dx.doi.org/10.1007/s10592-018-1051-1
,2018, 'The genetic structure of the introduced house sparrow populations in Australia and New Zealand is consistent with historical descriptions of multiple introductions to each country', Biological Invasions, 20, pp. 1507 - 1522, http://dx.doi.org/10.1007/s10530-017-1643-6
,2018, 'The ecological and life history correlates of boldness in free-ranging lizards', Ecosphere, 9, http://dx.doi.org/10.1002/ecs2.2125
,2018, 'Simulated Disperser Analysis: Determining the number of loci required to genetically identify dispersers', Peerj, 2018, pp. e4573, http://dx.doi.org/10.7717/peerj.4573
,2017, 'Host heterozygosity and genotype rarity affect viral dynamics in an avian subspecies complex', Scientific Reports, 7, http://dx.doi.org/10.1038/s41598-017-13476-z
,