Select Publications

Preprints

Brauchart J; Dick J, 2012, A characterization of Sobolev spaces on the sphere and an extension of Stolarsky's invariance principle to arbitrary smoothness, http://dx.doi.org/10.48550/arxiv.1203.5157

Dick J; Kritzer P, 2012, A higher order Blokh-Zyablov propagation rule for higher order nets, http://dx.doi.org/10.48550/arxiv.1203.4322

Aistleitner C; Brauchart J; Dick J, 2011, Point sets on the sphere $\mathbb{S}^2$ with small spherical cap discrepancy, http://dx.doi.org/10.48550/arxiv.1109.3265

Baldeaux J; Dick J; Leobacher G; Nuyens D; Pillichshammer F, 2011, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules, http://dx.doi.org/10.48550/arxiv.1105.2599

Chen S; Dick J; Owen AB, 2011, Consistency of Markov chain quasi-Monte Carlo on continuous state spaces, http://dx.doi.org/10.48550/arxiv.1105.1896

Brauchart JS; Dick J, 2011, Quasi-Monte Carlo rules for numerical integration over the unit sphere $\mathbb{S}^2$, http://dx.doi.org/10.48550/arxiv.1101.5450

Brauchart JS; Dick J, 2011, A simple Proof of Stolarsky's Invariance Principle, http://dx.doi.org/10.48550/arxiv.1101.4448

Dick J, 2010, Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands, http://dx.doi.org/10.48550/arxiv.1007.0842

Baldeaux J; Dick J, 2010, A Construction of Polynomial Lattice Rules with Small Gain Coefficients, http://dx.doi.org/10.48550/arxiv.1003.4785

Liu K-I; Dick J; Hickernell FJ, 2008, A Multivariate Fast Discrete Walsh Transform with an Application to Function Interpolation, http://dx.doi.org/10.48550/arxiv.0808.0487


Back to profile page