ORCID as entered in ROS

Select Publications
2018, 'Thermal-evaporated selenium as a hole-transporting material for planar perovskite solar cells', Solar Energy Materials and Solar Cells, 185, pp. 130 - 135, http://dx.doi.org/10.1016/j.solmat.2018.05.022
,2018, 'In situ growth of CuSbS2 thin films by reactive co-sputtering for solar cells', Materials Science in Semiconductor Processing, 84, pp. 101 - 106, http://dx.doi.org/10.1016/j.mssp.2018.05.004
,2018, 'In situ growth of CuSbS2 thin films by reactive co-sputtering for solar cells', MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 84, pp. 101 - 106, http://dx.doi.org/10.1016/j.mssp.2018.05.004
,2018, 'The Role of Hydrogen from ALD-Al2O3 in Kesterite Cu2ZnSnS4 Solar Cells: Grain Surface Passivation', Advanced Energy Materials, 8, http://dx.doi.org/10.1002/aenm.201701940
,2018, 'Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates', Solar Energy Materials and Solar Cells, 182, pp. 14 - 20, http://dx.doi.org/10.1016/j.solmat.2018.02.036
,2018, 'Solution-Processed Trigonal Cu2BaSnS4 Thin-Film Solar Cells', ACS Applied Energy Materials, 1, pp. 3420 - 3427, http://dx.doi.org/10.1021/acsaem.8b00514
,2018, 'Minority lifetime and efficiency improvement for CZTS solar cells via Cd ion soaking and post treatment', Journal of Alloys and Compounds, 750, pp. 328 - 332, http://dx.doi.org/10.1016/j.jallcom.2018.03.401
,2018, 'The effect of thermal evaporated MoO3 intermediate layer as primary back contact for kesterite Cu2ZnSnS4 solar cells', Thin Solid Films, 648, pp. 39 - 45, http://dx.doi.org/10.1016/j.tsf.2018.01.012
,2018, 'Boosting the kesterite Cu2ZnSnS4 solar cells performance by diode laser annealing', Solar Energy Materials and Solar Cells, 175, pp. 71 - 76, http://dx.doi.org/10.1016/j.solmat.2017.10.009
,2018, 'Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment', Nature Energy, 3, pp. 764 - 764, http://dx.doi.org/10.1038/s41560-018-0206-0
,2018, 'Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells', Advanced Energy Materials, 8, pp. 1800138 - 1800138, http://dx.doi.org/10.1002/aenm.201800138
,2018, 'Famatinite Cu3SbS4 nanocrystals as hole transporting material for efficient perovskite solar cells', Journal of Materials Chemistry C, 6, pp. 7989 - 7993, http://dx.doi.org/10.1039/c8tc02133c
,2018, 'Ionic liquid modified SnO2 nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells', Journal of Materials Chemistry A, 6, pp. 22086 - 22095, http://dx.doi.org/10.1039/c8ta04131h
,2018, 'Self-assembled nanometer-scale ZnS structure at the CZTS/ZnCdS heterointerface for high-efficiency wide band gap Cu 2 ZnSnS 4 solar cells', Chemistry of Materials, 30, pp. 4008 - 4016, http://dx.doi.org/10.1021/acs.chemmater.8b00009
,2017, 'Efficiency Enhancement of Kesterite Cu2ZnSnS4 Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface', ACS Applied Energy Materials, 1, pp. 154 - 160, http://dx.doi.org/10.1021/acsaem.7b00044
,2017, 'Hybrid Ag Nanowire-ITO as Transparent Conductive Electrode for Pure Sulfide Kesterite Cu2ZnSnS4 Solar Cells', Journal of Physical Chemistry C, 121, pp. 20597 - 20604, http://dx.doi.org/10.1021/acs.jpcc.7b05776
,2017, 'Light-Bias-Dependent External Quantum Efficiency of Kesterite Cu2ZnSnS4 Solar Cells', ACS Photonics, 4, pp. 1684 - 1690, http://dx.doi.org/10.1021/acsphotonics.7b00151
,2017, 'Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact', NPG Asia Mater, 9, pp. e401, http://dx.doi.org/10.1038/am.2017.103
,2017, 'Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition', Solar Energy Materials and Solar Cells, 166, pp. 91 - 99, http://dx.doi.org/10.1016/j.solmat.2017.03.002
,2017, 'Sentaurus modelling of 6.9% Cu2ZnSnS4 device based on comprehensive electrical & optical characterization', Solar Energy Materials and Solar Cells, 160, pp. 372 - 381, http://dx.doi.org/10.1016/j.solmat.2016.10.053
,2017, 'Beyond 11% Efficient Sulfide Kesterite Cu2ZnxCd1–xSnS4 Solar Cell: Effects of Cadmium Alloying', ACS Energy Letters, 2, pp. 930 - 936, http://dx.doi.org/10.1021/acsenergylett.7b00129
,2017, 'Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks', Solar Energy Materials and Solar Cells, 160, pp. 7 - 11, http://dx.doi.org/10.1016/j.solmat.2016.09.027
,2016, 'Photoelectrochemical properties of Bi2S3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method', Journal of Alloys and Compounds, 686, pp. 684 - 692, http://dx.doi.org/10.1016/j.jallcom.2016.06.065
,2016, 'Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers', Solar Energy Materials and Solar Cells, 144, pp. 700 - 706, http://dx.doi.org/10.1016/j.solmat.2015.10.019
,2016, 'Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates', Solar Energy Materials and Solar Cells, 157, pp. 565 - 571, http://dx.doi.org/10.1016/j.solmat.2016.07.036
,2016, 'Modification of absorber quality and Mo-back contact by a thin Bi intermediate layer for kesterite Cu2ZnSnS4 solar cells', Solar Energy Materials and Solar Cells, 144, pp. 537 - 543, http://dx.doi.org/10.1016/j.solmat.2015.09.066
,2016, 'Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells', Advanced Energy Materials, 6, pp. n/a - n/a, http://dx.doi.org/10.1002/aenm.201600706
,2016, 'Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1–xCdxS Buffer Layer', Advanced Energy Materials, 6, pp. n/a - n/a, http://dx.doi.org/10.1002/aenm.201600046
,2016, 'Understanding the Key Factors of Enhancing Phase and Compositional Controllability for 6% Efficient Pure-Sulfide Cu2ZnSnS4 Solar Cells Prepared from Quaternary Wurtzite Nanocrystals', Chemistry of Materials, 28, pp. 3649 - 3658, http://dx.doi.org/10.1021/acs.chemmater.5b04620
,2015, 'Back contact-absorber interface modification by inserting carbon intermediate layer and conversion efficiency improvement in Cu2ZnSn(S,Se)4 solar cell', Physica Status Solidi Rapid Research Letters, 9, pp. 687 - 691, http://dx.doi.org/10.1002/pssr.201510280
,2015, 'Improvement of Jsc in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface', ACS Applied Materials and Interfaces, 7, pp. 22868 - 22873, http://dx.doi.org/10.1021/acsami.5b05652
,2015, 'Kesterite Cu2ZnSnS4 thin film solar cells by a facile DMF-based solution coating process', Journal of Materials Chemistry C, 3, pp. 10783 - 10792, http://dx.doi.org/10.1039/c5tc01750e
,2015, 'Cu2ZnSnS4 solar cells prepared with sulphurized sol-gel deposited precursors', Zhongnan Daxue Xuebao Ziran Kexue Ban Journal of Central South University Science and Technology, 46, pp. 2014 - 2019, http://dx.doi.org/10.11817/j.issn.1672-7207.2015.06.006
,2015, 'Exploring the application of metastable wurtzite nanocrystals in pure-sulfide Cu2ZnSnS4 solar cells by forming nearly micron-sized large grains', Journal of Materials Chemistry A, http://dx.doi.org/10.1039/C5TA05813A
,2014, 'Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface', Applied Physics Letters, 104, http://dx.doi.org/10.1063/1.4863736
,2014, 'Erratum: Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method', Wuli Xuebao Acta Physica Sinica, 63, http://dx.doi.org/10.7498/aps.63.029901
,2014, 'Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route', Journal of Materials Chemistry A, 2, pp. 500 - 509, http://dx.doi.org/10.1039/c3ta13533k
,2014, 'Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method', Wuli Xuebao Acta Physica Sinica, 63, http://dx.doi.org/10.7498/aps.63.018801
,2014, 'Flexible Cu2ZnSnS4 solar cells based on successive ionic layer adsorption and reaction method', Rsc Advances, 4, pp. 17703 - 17708, http://dx.doi.org/10.1039/c3ra47823h
,2013, 'An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells', Surface and Coatings Technology, 232, pp. 53 - 59, http://dx.doi.org/10.1016/j.surfcoat.2013.04.052
,2013, 'Fabrication of pyrite FeS2 thin films by sulfurizing oxide precursor films deposited via successive ionic layer adsorption and reaction method', Thin Solid Films, 542, pp. 123 - 128, http://dx.doi.org/10.1016/j.tsf.2013.06.091
,2012, 'Fabrication of ternary Cu-Sn-S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method', Journal of Materials Chemistry, 22, pp. 16346 - 16352, http://dx.doi.org/10.1039/c2jm31669b
,2012, 'Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method', Applied Surface Science, 258, pp. 7678 - 7682, http://dx.doi.org/10.1016/j.apsusc.2012.04.120
,2012, 'Fabrication of Cu2ZnSnS4 nanowires and nanotubes based on AAO templates', CrystEngComm, 14, pp. 782 - 785, http://dx.doi.org/10.1039/C2CE06236D
,2002, 'Selective growth of single InAs quantum dots using strain engineering', APPLIED PHYSICS LETTERS, 80, pp. 326 - 328, http://dx.doi.org/10.1063/1.1433169
,'Defect Control for 12.5% Efficiency Cu <sub>2</sub>ZnSnSe <sub>4</sub> Kesterite Thin-Film Solar Cells by Engineering of Local Chemical Environment', SSRN Electronic Journal, http://dx.doi.org/10.2139/ssrn.3542579
,