ORCID as entered in ROS

Select Publications
2022, 'Photoassisted High-Performance Lithium Anode Enabled by Oriented Crystal Planes', ACS Nano, 16, pp. 17454 - 17465, http://dx.doi.org/10.1021/acsnano.2c08684
,2022, 'Semiconductorlike photocarrier dynamics in Dirac-semimetal Cd3As2 films probed with transient terahertz spectroscopy', PHYSICAL REVIEW B, 106, http://dx.doi.org/10.1103/PhysRevB.106.155137
,2022, 'Dynamical Response of Nonlinear Optical Anisotropy in a Tin Sulfide Crystal under Ultrafast Photoexcitation', JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 13, pp. 9355 - 9362, http://dx.doi.org/10.1021/acs.jpclett.2c02443
,2022, 'Comparative Study of TiO2 and CdS as the Electron Transport Layer for Sb2S3 Solar Cells', Solar RRL, 6, http://dx.doi.org/10.1002/solr.202200435
,2022, 'Conductive Covalent Organic Frameworks Meet Micro-Electrical Energy Storage: Mechanism, Synthesis and Applications—A Review', Crystals, 12, http://dx.doi.org/10.3390/cryst12101405
,2022, 'Manipulating the Distributions of Na and Cd by Moisture-Assisted Postdeposition Annealing for Efficient Kesterite Cu2ZnSnS4 Solar Cells', Solar Rrl, 6, http://dx.doi.org/10.1002/solr.202200442
,2022, 'Supercapacitors of Nanocrystalline Covalent Organic Frameworks—A Review', Crystals, 12, http://dx.doi.org/10.3390/cryst12101350
,2022, 'Defect Engineering for Efficient Cu2ZnSnS4 Solar Cells via Moisture-Assisted Post-Deposition Annealing', Advanced Optical Materials, 10, http://dx.doi.org/10.1002/adom.202200607
,2022, 'Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries', Journal of Colloid and Interface Science, 621, pp. 41 - 66, http://dx.doi.org/10.1016/j.jcis.2022.04.075
,2022, 'Interface Crystallographic Optimization of Crystal Plane for Stable Metallic Lithium Anode', ACS Applied Materials and Interfaces, 14, pp. 38696 - 38705, http://dx.doi.org/10.1021/acsami.2c08278
,2022, 'Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future', Small, 18, http://dx.doi.org/10.1002/smll.202203014
,2022, 'Emerging green technologies for recovery and reuse of spent lithium-ion batteries - a review', Journal of Materials Chemistry A, 10, pp. 17053 - 17076, http://dx.doi.org/10.1039/d2ta03295c
,2022, 'Atomic surface modification strategy of MXene materials for high-performance metal sulfur batteries', International Journal of Energy Research, 46, pp. 11659 - 11675, http://dx.doi.org/10.1002/er.8025
,2022, 'Engineering a Kesterite-Based Photocathode for Photoelectrochemical Ammonia Synthesis from NOx Reduction', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202201670
,2022, 'Observation of Ultrafast Interfacial Exciton Formation and Relaxation in Graphene/MoS2 Heterostructure', JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 13, pp. 5123 - 5130, http://dx.doi.org/10.1021/acs.jpclett.2c01197
,2022, 'Element-Doped Mxenes: Mechanism, Synthesis, and Applications', Small, 18, http://dx.doi.org/10.1002/smll.202201740
,2022, 'Integrating a redox-coupled FeSe2/N-C photoelectrode into potassium ion hybrid capacitors for photoassisted charging', Journal of Materials Chemistry A, 10, pp. 11504 - 11513, http://dx.doi.org/10.1039/d2ta02095e
,2022, 'Low-Cost Fabrication of Sb2S3 Solar Cells: Direct Evaporation from Raw Stibnite Ore', Solar Rrl, 6, http://dx.doi.org/10.1002/solr.202100843
,2022, 'Ultrafast Dynamics of Defect-Assisted Auger Process in PdSe2Films:Synergistic Interaction between Defect Trapping and Auger Effect', JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 13, pp. 2757 - 2764, http://dx.doi.org/10.1021/acs.jpclett.2c00315
,2022, 'Large-Grain Spanning Monolayer Cu2ZnSnSe4 Thin-Film Solar Cells Grown from Metal Precursor', Small, 18, http://dx.doi.org/10.1002/smll.202105044
,2022, 'Dimensional optimization enables high-performance capacitive deionization', Journal of Materials Chemistry A, 10, pp. 6414 - 6441, http://dx.doi.org/10.1039/d1ta10783f
,2022, '9.6%-Efficient all-inorganic Sb 2 (S,Se) 3 solar cells with a MnS hole-transporting layer', Journal of Materials Chemistry A, 10, pp. 2835 - 2841, http://dx.doi.org/10.1039/d1ta09913b
,2022, 'Dual-functional iodine photoelectrode enabling high performance photo-assisted rechargeable lithium iodine batteries', Journal of Materials Chemistry A, 10, pp. 7326 - 7332, http://dx.doi.org/10.1039/d2ta00258b
,2022, 'Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells', Nature Energy, http://dx.doi.org/10.1038/s41560-022-01078-7
,2022, '11.39% efficiency Cu2ZnSn(S,Se)4 solar cells from scrap brass', SusMat, 2, pp. 206 - 211, http://dx.doi.org/10.1002/sus2.44
,2021, 'Interface Recombination of Cu2ZnSnS4 Solar Cells Leveraged by High Carrier Density and Interface Defects', Solar Rrl, 5, http://dx.doi.org/10.1002/solr.202100418
,2021, 'Systematic Efficiency Improvement for Cu2ZnSn(S,Se)4 Solar Cells By Double Cation Incorporation with Cd and Ge', Advanced Functional Materials, 31, http://dx.doi.org/10.1002/adfm.202104528
,2021, 'Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review', Journal of Energy Chemistry, 60, pp. 1 - 8, http://dx.doi.org/10.1016/j.jechem.2020.12.019
,2021, 'Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO2 Reduction', Small, 17, http://dx.doi.org/10.1002/smll.202100496
,2021, 'Enhancing the performance of Cu2ZnSnS4 solar cell fabricated via successive ionic layer adsorption and reaction method by optimizing the annealing process', Solar Energy, 220, pp. 204 - 210, http://dx.doi.org/10.1016/j.solener.2021.03.033
,2021, 'Defect-Resolved Effective Majority Carrier Mobility in Highly Anisotropic Antimony Chalcogenide Thin-Film Solar Cells', Solar Rrl, 5, http://dx.doi.org/10.1002/solr.202000693
,2021, 'Analysis of manufacturing cost and market niches for Cu2ZnSnS4(CZTS) solar cells', Sustainable Energy and Fuels, 5, pp. 1044 - 1058, http://dx.doi.org/10.1039/d0se01734e
,2020, '11.6% Efficient Pure Sulfide Cu(In,Ga)S2 Solar Cell through a Cu-Deficient and KCN-Free Process', ACS Applied Energy Materials, 3, pp. 11974 - 11980, http://dx.doi.org/10.1021/acsaem.0c02158
,2020, 'Research progress on recycling technology of end-of-life silicon photovoltaic modules', Zhongnan Daxue Xuebao Ziran Kexue Ban Journal of Central South University Science and Technology, 51, pp. 3279 - 3288, http://dx.doi.org/10.11817/j.issn.1672-7207.2020.12.002
,2020, 'Defect Control for 12.5% Efficiency Cu2ZnSnSe4 Kesterite Thin-Film Solar Cells by Engineering of Local Chemical Environment', Advanced Materials, 32, pp. e2005268, http://dx.doi.org/10.1002/adma.202005268
,2020, 'Revealing Nanoscale Domains in Cu2ZnSnS4 Thin Films by Catalyzed Chemical Etching', Physica Status Solidi Rapid Research Letters, 14, http://dx.doi.org/10.1002/pssr.202000283
,2020, 'Quasi-Vertically-Orientated Antimony Sulfide Inorganic Thin-Film Solar Cells Achieved by Vapor Transport Deposition', ACS Applied Materials and Interfaces, 12, pp. 22825 - 22834, http://dx.doi.org/10.1021/acsami.0c02697
,2020, 'Epitaxial growth of Cu2ZnSnS4 thin film on Si by radio frequency magnetron sputtering', Applied Physics Letters, 116, http://dx.doi.org/10.1063/1.5136289
,2020, 'Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution', Nano Energy, 69, http://dx.doi.org/10.1016/j.nanoen.2019.104438
,2020, 'Sol-gel solution-processed Cu2SrSnS4 thin films for solar energy harvesting', Thin Solid Films, 697, http://dx.doi.org/10.1016/j.tsf.2020.137828
,2020, 'Photoluminescence-Based Method for Imaging Buffer Layer Thickness in CIGS Solar Cells', IEEE Journal of Photovoltaics, 10, pp. 181 - 187, http://dx.doi.org/10.1109/JPHOTOV.2019.2950630
,2019, 'Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers', Energy and Environmental Science, 12, pp. 2751 - 2764, http://dx.doi.org/10.1039/c9ee01726g
,2019, 'Quasiepitaxy Strategy for Efficient Full-Inorganic Sb2S3 Solar Cells', Advanced Functional Materials, 29, http://dx.doi.org/10.1002/adfm.201901720
,2019, 'Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells', Ceramics International, 45, pp. 3044 - 3051, http://dx.doi.org/10.1016/j.ceramint.2018.10.155
,2019, 'Improvement of Cs-(FAPbI3)0.85(MAPbBr3)0.15 quality via DMSO-molecule-control to increase the efficiency and boost the long-term stability of 1 cm2 sized planar perovskite solar cells', Solar RRL, pp. 1800338 - 1800338, http://dx.doi.org/10.1002/solr.201800338
,2019, 'Beyond 10% efficiency Cu2ZnSnS4 solar cells enabled by modifying the heterojunction interface chemistry', Journal of Materials Chemistry A, 7, pp. 27289 - 27296, http://dx.doi.org/10.1039/c9ta09576d
,2019, 'Facile fabrication of highly efficient ETL-free perovskite solar cells with 20% efficiency by defect passivation and interface engineering', Chemical Communications, 55, pp. 2777 - 2780, http://dx.doi.org/10.1039/c9cc00312f
,2019, 'High open-circuit voltage CuSbS2 solar cells achieved through the formation of epitaxial growth of CdS/CuSbS2 hetero-interface by post-annealing treatment', Progress in Photovoltaics Research and Applications, 27, pp. 37 - 43, http://dx.doi.org/10.1002/pip.3061
,2018, 'Enhanced Heterojunction Interface Quality to Achieve 9.3% Efficient Cd-Free Cu2ZnSnS4 Solar Cells Using Atomic Layer Deposition ZnSnO Buffer Layer', Chemistry of Materials, 30, pp. 7860 - 7871, http://dx.doi.org/10.1021/acs.chemmater.8b03398
,2018, 'Ternary blend organic solar cells with a non-fullerene acceptor as a third component to synergistically improve the efficiency', Organic Electronics, 62, pp. 261 - 268, http://dx.doi.org/10.1016/j.orgel.2018.08.029
,